

Towards Responsible Sourcing and Manufacture of Growing Media

Guidance Notes: Responsible sourcing scheme for growing media

August 2024

These guidance notes will continue to be updated; this is a working document. Please ensure you are using the latest available version.

Change log

Changes from version 9 of the guidance notes:

- Reformatting of document.
- Inclusion of scheme logo.
- Broken hyperlinks replaced.
- Table 1 starting point for municipal waste sourced materials amended in footnote "e".
- Table 2 allocated responsibility for wood products updated with new source data.
- Most figures reformatted and updated.
- Table 5 fuel conversion factors updated.
- Table 6 "Diesel freight conversion factors" replaces previous "Diesel freight fuel use factors" and converts distance to kWh without the need to calculate the volume of fuel used.
- Table 7 standard port to port distances errors corrected.
- Table 8 generic energy data generic data on transport of wood to sawmill added.
- Social compliance methodology updated and self-assessment questionnaire modified
- Figure 11 new social compliance ingredient rater tool.
- Figure 13 wood habitat and biodiversity decision tree updated in line with table 2 updates.
- Figure 19 pollution scoring decision tree replaced and methodology for calculating pollution score amended.
- Figure 21 new pollution questionnaire.
- Figure 22 new pollution ingredient rater tool.
- Update of all worked examples.

Introduction

Use of any materials, in any industry, will have an impact on the environment we live in, and the people involved in their manufacture.

The UK horticultural industry actively seeks to improve its sustainability wherever possible. As part of this, the industry has examined its sourcing of growing media and drafted the following scheme to enable manufacturers and users of growing media to understand and measure how their choice of growing media materials impacts on seven criteria (energy use, water use, social compliance, habitat and biodiversity, pollution, renewability and resource use efficiency). Sourcing materials responsibly is about making deliberate, educated choices to minimise those impacts, but there is also a need to constantly revisit and challenge thresholds in order to maintain "best practice". The criteria have been defined as being able to differentiate more responsibly sourced from less responsibly sourced material. It will enable users of the scheme to source materials more responsibly, which we hope will help to improve the sustainability of this part of their businesses.

Some of the decision criteria may appear arbitrary but they have been chosen to account for complicated and variable situations which can include global supply chains. The criteria have been developed through careful deliberation and have evolved through numerous iterations into their current form. The intention has been to make the scheme globally relevant, with reference to documents, standards etc. applicable to all countries.

The scheme will be independently audited, and users will need to provide evidence to support the scores they claim. Evidence will need to be gathered from across the supply chain, as described under each criterion.

Table of Contents	
Change log Introduction	
Part 1: The basis of a scheme towards the responsible sourcing and manufacture of growing media	5
Core requirements The promise Criteria Materials, starting and end points Scoring	5 6 6
Part 2: The criteria in detail	12
Supply chain mapping Energy use (in extraction, transport and production) Water use (in extraction and production) Social compliance Habitat and biodiversity	13 20 23
Peat Wood-based material Coir pith Minerals Recycled materials Agricultural crops (energy crops for AD, oilseed rape straw, farmed Sphagnum) Bracken Wool (sheep only) Cork	29 30 32 33 34 35 36
Pollution Renewability Resource use efficiency Consideration of carbon emissions and climate change	41 42
Part 3: Worked examples	
Material 1: Wood fibre produced by Company 1 Material 2: Coir pith produced by Company 1 Material 3: Green compost produced by Company 1 Product 1: Multi-purpose compost produced by Company 1 Material 4: Bark produced by Company 2 Material 5: Anaerobic digestate produced by Company 2	53 61 66 67
Annex 1: Glossary Annex 2: Social compliance self-assessment questionnaire minimum requirements Annex 3: Documentary evidence checklist	92

Part 1: The basis of a scheme towards the responsible sourcing and manufacture of growing media

Core requirements

All responsibly sourced and manufactured growing media and soil improvers must meet these requirements:

- Fitness for purpose: They must be capable of growing plants (growing media) or improving the physical, chemical or biological condition of soils (soil improvers). The assessment of this is out of scope of this scheme. A performance standard is available at: https://www.responsiblesourcing.org.uk/media/leshn2xs/p7-protocol_nov22-version.pdf
- Environmental accountability: They must have minimal impact on the environment. This assessment is in-scope for this scheme.
- ✓ Social accountability: The supply chain must have transparent social compliance programmes in place. This assessment is in-scope for this scheme.
- Product safety: They must be safe to use. The assessment of this is out of scope of this scheme.
- Legality: They must comply with all legal requirements. The assessment of this is out of scope of this scheme.

The promise

All growing media (and soil improvers) are made from materials that are sourced and manufactured in a way that is both socially and environmentally responsible.

	In scope	Out of scope
Life cycle	 Extraction/growing and harvest 	 Bagging (including packaging)
stages (Stage in	 Transport to manufacturer 	 Transport from manufacturer to
process)	 Processing and Production 	consumer
	 Up to the point of being mixed 	 Use/disposal by consumer
Ingredients	 Bulk ingredients that contribute to the final volume and provide physical structure (>5% by volume) Organic and inorganic 	 Additives (e.g., fertilisers, wetting agents, lime)
Climate change	✓ Energy use	 Direct calculation of greenhouse
impacts	 Carbon turnover and cycling with 	gas emissions
	the atmosphere	 Carbon sinks
	✓ Land use change	
Sustainability	 Environmental 	× Economic
pillars	✓ Social	

The promise is a pragmatic compromise, balancing the need for detail relating to the detrimental environmental and social effects of sourcing and manufacturing growing media and soil improving materials with the need to design a relatively simple and workable scheme.

Criteria

Seven criteria have been selected to assess growing media and soil improvers:

- Energy use (in extraction, transport and production)
- Water use (in extraction and production)
- Social compliance
- Habitat and biodiversity
 - The assessment for this varies by class of material. Materials which do not fit one of the existing methods of assessment will need to be referred to the technical committee.
- Pollution
- Renewability
- Resource use efficiency

<u>Out of scope</u>: Carbon emissions and climate change are not listed as a separate criterion although some elements are covered by the other criteria. For example, the renewability criterion has a dual role of capturing both the long-term sustainability of the substrate through its replacement time on site; the impact of the substrate on atmospheric carbon dioxide levels and carbon cycling through the period over which emitted carbon dioxide is recaptured through the regrowth of the raw material on the same site.

Materials, starting and end points

Table 1: Materials

Material ^a	Category	Starting point	End point ^f
anaerobic digestate (from energy crops) ^b , bark, biochar (from forestry products), bracken, coir pith, cork, grit, oilseed rape straw, peat, wood fibre, wool, perlite, sand, sphagnum (farmed), vermiculite	Virgin material °	Extraction or equivalent process ^d	 If produced in country of sale (not imported) = start of mixing system If finished product imported into country of sale = start of mixing system + transport to
anaerobic digestate (from waste materials) ^b , biochar (from waste materials), cork (recycled), green compost, topsoil, spent mushroom substrate	Recycled material	Volume where commercial transport becomes viable ^e	point of entry (excludes packaging etc.)

Notes:

- a. Bulk ingredients of growing media and soil improvers that contribute to the final volume and provide physical structure (and make up >5% by volume of the mix). Example materials presented.
- b. Anaerobic digestate and biochar should be treated as a virgin material or a recycled material depending on the source material. Where the digestate or biochar is a blend of sources the scores for the material should be the weighted average for the proportion of each source in the blend on an annual basis. The weighting should be applied after the individual score is generated for each source even though they are in a blend for parts of the production process.
- c. Virgin by-products are not treated separately as they form part of the business model for the material. However, they are allocated responsibility for only a proportion of the impact of the material at different production stages (Table 2 and Table 3).

- d. The starting point for virgin materials (including by-products) is extraction (peat, loam, topsoil, minerals) or equivalent (e.g., raising of a tree seedling or transplant for wood-based material including biochar (from forestry products), harvesting of bracken, sowing or establishment for Sphagnum (farmed)). For coir pith and wood-based materials (including biochar (from forestry products) and cork) it is extremely challenging to obtain data from this starting point for all criteria. For anaerobic digestate (from energy crops), oilseed rape straw and wool (sheep only) the additional effort of collecting specific data from this starting point is not always justified due to low apportionment of impact (Table 2 and Table 3). Modified starting points have been identified for these materials for certain criteria (Table 4).
- e. The starting point for recycled materials is the volume where commercial transport becomes viable. For recycled materials such as green compost and anaerobic digestate (from household waste materials) this would be municipal collection. A default transport distance of 25km is assumed for municipal collection (WRAP (2021) Carbon Waste and Resources Metric - <u>Technical report templates (wrap.org.uk)</u>).
- f. In general, the end point for measuring impact is set at the start of the processing system or mixing system, when the ingredients are to be combined. Supply chain models after the processing system or mixing system are too variable and complex to be measured in a consistent way.

By-product		Forest ^c	Sawmill ^b	Processing ^d	Pyrolysis Plant ^e
Bark ^f	Final	7%	7%	100%	-
	Biochar from	2.5%	2.5%	35%	35%
Sawdust,	Final	12.5%	12.5%	100%	-
shavings and fines	Biochar from	4.4%	4.4%	35%	35%
Wood chips	Final	25%	25%	100%	-
	Biochar from	8.8%	8.8%	35%	35%

Table 2: Allocated responsibility ^a for virgin by-products by production stage - wood based products

Notes:

a. By-products share the impacts going back up the supply chain with the main product and other by-products and are allocated responsibility for an appropriate proportion of these impacts at different stages in production. The proportion will be dependent on the supply chain.

Source or detail:

- b. FAO, ITTO and United Nations. 2020. Forest product conversion factors. Rome. https://doi.org/10.4060/ca7952en
- c. Harvested roundwood is assumed to be responsible for all the impact at the forest operations.
- d. The impact for the source material for biochar is modified by the percentage impact that biochar has at the pyrolysis plant, i.e., 35%.
- e. Pyrolysis of biomass produces three products 1) bio-oil, 2) synthetic gas, and 3) biochar. All three products have a value as a fuel substitute, but the value can vary depending on the fuel that is substituted. Biochar also has a range of other uses and economic values associated with them. Therefore, it is not possible to assign impact based on market value of the product. Instead, impact is split based on mass of

product. This can vary based on the type of conversion process that is used (i.e., fast and slow pyrolysis and gasification). Slow pyrolysis maximises production of biochar. A ratio of 30:35:35 is proposed for oil, gas and char from slow pyrolysis in Tomczyk, A., Sokołowska, Z. & Boguta, P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19, 191–215 (2020). <u>https://doi.org/10.1007/s11157-020-09523-3</u>. Therefore, an impact of 35% is assigned to biochar at the pyrolysis plant.

f. According to 'FAO, ITTO and United Nations. 2020. Forest product conversion factors. Rome.' bark should be allocated 12% of the impact based on the volume of bark compared to the volume of roundwood. However, it also states that not all of this bark will be recoverable. No published data on the volume of recoverable bark has been identified. However, anecdotal evidence from one company suggests that the value could be around 5.5%. Therefore, the decision has been made to continue to use the previous value of 7%. Alternative values can be used if suitable evidence can be provided to the auditors.

Table 3: Allocated responsibility for virgin by-products by production stage – other materials

By-product	Production stage	Responsible for % of impacts ^a
Coir pith	Coconut production	5% ^b
	Coir fibre production	50% ^b
	Coir pith processing	100%
Anaerobic digestate (from	Farm	6% ^c
energy crops)	Anaerobic digestion facility	6% ^c
	Separation of liquid from fibre	67% [°]
Wool	Farm	3% ^d
	From farm gate	100%
Oilseed rape straw	Farm	10% ^e
Cork	Forest/Farm	30% ^f
	Natural cork stopper	30% ^f
	production	
	Grinding processing	100%

Notes:

a. By-products share the impacts going back up the supply chain with the main product and other by-products and are allocated responsibility for an appropriate proportion of these impacts at different stages in production. The proportion will be dependent on the supply chain.

Source or detail:

- b. Newleaf (2012): Coir: a sustainability assessment. Final report for Defra project SP1214.
- c. Responsibility for impacts is assigned based on the economic value of the products from anaerobic digestion. Using the example of an on-farm digester with an annual feedstock volume of 10,000 tonnes FW, producing 3,000 tonnes FW separated fibre. Value of energy to the business is £300,000 per annum, value of the fibre based on its fertiliser replacement value (price on 4 November 2020) is £19,500, value of liquid digestate based on its fertiliser replacement value is assumed to be half that of the fibre. Giving a value ratio of 91:6:3 at the farm (respectively) and 0:67:33 at the separation process.

- d. Responsibility for impacts is assigned based on the economic value of the products from sheep production. The economic value of a sheep in the UK is around 97% for the carcass and 3% for the wool.
- e. Value of oilseed to straw ratio is 9:1 based on market value in October 2022.
- f. Natural wine corks, despite accounting for less than 30 per cent of actual weight of cork production, account consistently for approximately 70 per cent of the value of all cork products and exports. (Goncalves, E. (2000) The Cork Report: A study on the economics of cork. Report to RSPB.) Therefore, the remaining cork products from the ground-up leftovers of the wine cork making process have 30% impact at these earlier stages in the supply chain.

Table 4: Modifications to starting points for materials for which assessment at the extraction or equivalent production stage has been judged too challenging (coir pith, cork and wood-based products) ^a or where additional effort is not justified (having <10% impact) (anaerobic digestate (from energy crops), oilseed rape straw and wool) ^b

Modification	Material	Criteria modificatio	on applies t	to			
		Social Pollution			Resource use		
		compliance			efficiency		
Move starting	Anaerobic	Farm ^e	AD facilit	y	AD facility		
point	digestate (from						
	energy crops)						
	Coir pith	Fibre mill	Fibre mil		Fibre mill		
	Cork	Processor ^f	Processo	or ^f	Processor ^f		
	Oilseed rape	Farm ^e	Farm ^e		Growing media		
	straw				manufacturer		
	Wood based ^d	Sawmill	Sawmill		Sawmill		
	Wool	Farm ^e	Growing		Growing media		
			manufac	turer	manufacturer		
		Energy use		Water us	se		
Use generic data	Anaerobic	Farm and transpor	rt to the AD) facility			
for uncertain	digestate (from						
supply chain tiers	energy crops)						
С	Coir pith	Coconut small holding/plantation and transport to the fibre mill					
	Cork	Forest/Farm and transport to the cork processor					
	Oilseed rape	Farm					
	straw						
	Wood based ^d	forest and transport to the sawmill					
	Wool	Farm and transport to a collection hub (where utilised)					
		Habitat and biodive	ersity	Renewa	bility		
Approach	Anaerobic	Weighted average	farm	No chan	ge		
	digestate (from	approach			-		
	energy crops)						
	Coir pith	Regional approach	า				
	Cork	Scores 20 ^g					
	Oilseed rape	Weighted average farm					
	straw	approach					
	Wood based ^d	Proxy approach					
	Wool	Weighted average	farm				
		approach					

Notes:

- a. It is not always possible to collect relevant data for the proposed starting point for coir pith and wood-based materials (including biochar (from forestry products) and cork) for all the criteria. Modifications to the starting point apply, which in some cases move the starting point to a more pragmatic and accurately assessable production stage. Modifications to the starting point are set by the scheme not the user. These will be reassessed periodically.
- b. As anaerobic digestate (from energy crops) is only judged to be responsible for 6% of the impact at the farm, the additional effort of collecting data from this starting point (multiple fields) is not worth the additional cost or impact on the total score to be justified. The same is true of oilseed rape straw and wool (sheep only) which are only judged to be responsible for 10% and 3% of the impact at the farm respectively. Modifications to the starting point apply, which in some cases move the starting point to a more pragmatic production stage. Modifications to the starting point are set by the scheme not the user. These will be reassessed periodically.
- c. If a company has real data which can be used in place of generic data this is encouraged, if it is fully auditable.
- d. Wood based products include biochar (from forestry products) but excludes cork as the tree is not felled.
- e. Starting point is the farm and not individual fields (will cover more than just fields being used to produce the material).
- f. Starting point is the cork processor.
- g. There is agreement in the literature that the harvesting of cork is beneficial for habitat and biodiversity at the site level and that the economic value of harvested cork is beneficial in conserving and retaining these valuable habitats at a landscape or national level.

Scoring

Scores out of 20 have been separated into categories, illustrated using a traffic light system (Figure 1).

18-20	Current good practice	Notes:
12-17.99	Watch	20 = highest score for all criteria
6-11.99	Poor	0 = lowest score for three criteria – habitat, social, pollution
0-5.99	Critical	1 = lowest score for the remaining criteria

Figure 1: Boundary Scores

Scores are allocated using scoring decision trees (Part 2: The criteria in detail). Not all of the scores 0-20 are available on each tree.

For every product each bulk ingredient will be assessed and awarded a score for each criterion. All criteria have equal weighting. The product score will be the sum of the ingredient scores weighted by % volume (Figure 2 and Part 3: Worked examples).

There is no threshold score at which a product is deemed to be responsible. Instead, a rating system (A to E) has been developed to indicate the degree of responsibility (responsibility index – Figure 3).

August 2024

	Peat	Coir	Woodfibre	Composted bark fines	Bark fines	Green compost	
Energy use	14	14	14	10	10	10	
Water use	20	8	18	20	20	20	
Social compliance	9	9	5	4	4	5	
Habitat & biodiversity	1	12	3	15	15	20	
Pollution	18	12.02	15.7	14.42	14.42	17.4	
Renewability	1	20	17	17	17	20	
Resource Use Efficiency	8	15	15	15	15	17	
Substrate Calculator Score	71	90.02	87.7	95.42	95.42	109.4	
Mix 1	80%					20%	78.7
Mix 2	50%			30%		20%	86.0
Mix 3		20%	30%	30%		20%	94.8
Mix 4		50%		25%		25%	96.2

Figure 2: Example of scored criteria for a range of products

Α	>101
В	93-100.9
С	85-92.9
D	77-84.9
E	<77

Figure 3: Responsibility index

Part 2: The criteria in detail

Each of the 7 criteria is described here in detail (followed by consideration of carbon and climate change) with a decision tree to follow to derive a score for that criterion.

Only scores set out in the decision trees can be awarded, unless the methodology calls for an average score to be generated. The colour scheme and boundary values for the categories (current good practice, watch, poor and critical) are a visual representation (see Scoring).

The criteria require consideration of the total impact/resource use through each step in the supply chain from the material start point to end point.

Therefore, in order to use the decision trees an understanding of the supply chain for each material is required.

Supply chain mapping

The supply chain for each material and product must be mapped out. Supply chain maps should include details of each company in the chain (Figure 4).

Evidence should be collected from each company in the supply chain for inspection by the auditor.

Figure 4: Example supply chain map

More complicated supply chain maps are included in the worked examples (see Part 3: Worked examples).

Energy use (in extraction, transport and production)

Figure 5: Energy use (in extraction, transport and production) scoring decision tree

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest Transport to manufacturer Processing and Production Up to the start of the mixing system Waste disposal by manufacturer 	 Construction of infrastructure Mixing system Bagging (including packaging) Office Transport from manufacturer to consumer Use/disposal by consumer
Imported finished products	 Transport from manufacturer to point of entry into country 	 Bagging (including packaging)
Return journeys for empty vehicles	 Road based transport Specialist vehicles which are unlikely to have a return or onward load, e.g., timber transport 	 Third party haulage (except where specialist vehicles are used) Transport by air and rail
Energy	 ✓ Fossil fuel ○ Electricity ○ Diesel ○ Fuel oil ○ etc. 	 Renewable energy generated by company used in processing or manufacture of material. Electricity provided through a green tariff certificated by an accepted certification scheme, e.g., the Renewable Energy Guarantees of Origin (REGO) scheme.

Figure 6: Example energy calculation

Fossil fuel energy use at each stage of production and transport is calculated (from starting point to end point Table 1) and with consideration of percentage allocated impact at each stage of production for virgin by-products (Table 2 and Table 3)) and added together. Documentary evidence is required. Standard data is provided in Table 5, Table 6 and Table 7. Generic data for the first production stages of coir pith, wood-based materials and anaerobic digestate (from energy crops) (Table 4) are given in Table 8. Where data is missing from one or more sites or companies in a supply chain, an average of the other suppliers or sites at that tier of the supply chain can be used as long as the this does not apply to more than 10% of the volume of the material in that tier. See also Part 3: Worked examples.

	litres/tonne	kWh/litre
Aviation Spirit	1324.00	9.82
Aviation Turbine Fuel	1253.00	10.25
Burning Oil	1245.00	10.30
Butane	1742.00	7.83
Diesel (100% mineral diesel)	1205.00	10.55
Diesel (average biofuel blend)	1200.72	10.51
Fuel Oil	1028.00	11.76
Gas Oil	1187.00	10.60
Lubricants	1194.00	10.13
LPG	1882.89	7.28
Naphtha	1477.00	8.99
Natural Gas	1257160.27	0.01
Natural Gas (100% mineral blend)	1257160.27	0.01
Other petroleum gas	2730.00	5.15
Petrol (100% mineral petrol)	1345.00	9.70
Petrol (average biofuel blend)	1338.07	9.46
Propane	1941.00	7.21
Waste oils	1187.00	10.58

Table 5: Fuel conversion factors for commonly used fossil fuels

Source: Greenhouse gas reporting: conversion factors 2023, Department for Energy Security and Net Zero. <u>https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023</u>

Table 6: Diesel freight conversion factors

			0% Laden	50% Laden	100% Laden	Average Laden
Activity	Туре	Unit	kWh (Net CV)	kWh (Net CV)	kWh (Net CV)	kWh (Net CV)
		tonne.km		1.75	0.95	2.02
	Rigid (>3.5 - 7.5 tonnes)	km	1.78	1.93	2.09	1.91
	tonnesj	miles	2.86	3.11	3.36	3.08
	Rigid (>7.5 tonnes-	tonne.km		0.99	0.55	1.39
	17 tonnes)	km	2.12	2.43	2.73	2.33
	17 tormes)	miles	3.42	3.91	4.40	3.75
		tonne.km		0.79	0.47	0.60
	Rigid (>17 tonnes)	km	2.93	3.57	4.21	3.83
		miles	4.71	5.75	6.78	6.17
		tonne.km		0.84	0.49	0.70
	All rigids	km	2.58	3.08	3.58	3.24
HGV (all diesel)		miles	4.16	4.96	5.75	5.21
iov (all diesel)	Articulated (>3.5 -	tonne.km		0.45	0.27	0.45
	33t)	km	2.40	3.00	3.60	3.00
	55()	miles	3.86	4.83	5.79	4.83
		tonne.km		0.36	0.23	0.29
	Articulated (>33t)	km	2.46	3.28	4.09	3.57
		miles	3.95	5.27	6.59	5.75
		tonne.km		0.36	0.23	0.29
	All artics	km	2.45	3.26	4.07	3.55
		miles	3.95	5.25	6.55	5.71
		tonne.km		0.47	0.28	0.38
	All HGVs	km	2.51	3.19	3.87	3.42
		miles	4.03	5.13	6.23	5.50

Source: Greenhouse gas reporting: conversion factors 2023, Department for Energy Security and Net Zero. <u>https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023</u>

Notes:

- The % weight laden refers to the extent to which the vehicle is loaded to their maximum carrying capacity. A 0% weight laden means the vehicle is travelling carrying no loads. 100% weight laden means the vehicle is travelling with loads bringing the vehicle to its maximum carrying capacity. The average laden value used is derived from Department of Transport Road Freight Statistics.
- 2. Tonne.km is an equivalent measure of one tonne of transported goods over one kilometre.

Table 7: Standard port to port transport distances

Transport distanc	es (km)	Bristol	Hull	Liverpool	Southampton	Belfast	Rotterdam	Felixstowe
Sri Lanka	Colombo	13646	14353	13899	13683	13892	14210	14040
Northern Ireland	Belfast	670	1298	357	1069	-	1613	1443
Eire	Dublin	402	1439	328	765	309	1308	1139
Netherlands	Rotterdam	1346	570	1600	543	1613	-	248
Estonia	Tallinn	3785	2600	3417	2982	3060	2556	2687
Latvia	Riga	3643	2459	3274	2841	2917	2415	2547
Lithuania	Klaipeda	3256	2072	2887	2454	2530	2028	2159
India	Tuticorin	13512	14220	13766	13549	13759	14077	13905
Germany	Bremerhaven	1800	615	2054	996	2067	572	702

		Sri Lanka	(S
		Colombo	Â۱
India	Tuticorin	365	[A
	Conversion factor 1 na	utical mila - 1 8520km	

Source: Ports.com (2023). [Online] Available at: <u>http://ports.com/sea-route</u> Accessed 06.10.23])

Conversion factor - 1 nautical mile = 1.8520km.

Table 8: Generic data for uncertain supply chain tiers or where effort to collect specific data is not justified (Table 4) (energy)

Production tier	Generic data	Source
Coconut small holding/plantation	Energy use assumed to be negligible per m ³ at a 5% impact	
Transport of coconut husks to fibre mill	As for coir pith transport to pith factory (1m ³ of coir pith is produced from 4m ³ of coconut husks)	
Coir pith transport to pith factory	Generally, coir pith is collected from fibre mills within a 20km radius of the pith processing unit. Medium commercial vehicles in India (and Sri Lanka) travel 4.3 km per litre of diesel.	Newleaf (2012): Coir: a sustainability assessment. Final report for Defra project SP1214. <u>http://randd.defra.gov.uk/</u> ICRA Management Consulting Services Limited (IMaCS)(2013): Market Survey leading to Fuel Consumption norms for Diesel (Engine Driven) Trucks & Buses in India. Final Report for the Petroleum Conservation Research Association
Forest site preparation and establishment	19525.26 MJ/ha (5423.68 kWh/ha or 6.8 kWh/m ³ of wood assuming 796m ³ of standing volume per hectare)	Whittaker CL, Mortimer ND, Matthews RW. (2010) Understanding the Carbon Footprint of Timber Transport in the United Kingdom. Sheffield, UK: North Energy Associates LTD. <u>https://www.researchgate.net/publication/</u> <u>312448400_Understanding_the_carbon_footprint_of_timber_transport_in_the_United_Kingdom</u>

Production tier	Generic data	Source
Forest harvest	Diesel fuel consumption for felling is estimated at 1.2 litres/m ³ of biomass and for forwarding at 0.9 litres/m ³ of biomass	Whittaker, C., Mortimer, N., Murphy, R. and Matthews, R. (2011) Energy and greenhouse gas balance of the use of forest residues for bioenergy production in the UK. Biomass and Bioenergy, 35 (11). pp. 29-45. ISSN 0961-9534 http://opus.bath.ac.uk/26708/1/Whittaker BiomassBioenergy 2011.pdf
Transport of wood to sawmill	The average timber haulage distance is 51 miles (82 km) (or 102 mile/164 km round trip). 20% of the journey is on forest roads. Fuel use is 0.459 I/km for forest roads and 0.342 I/km for public roads.	Whittaker CL, Mortimer ND, Matthews RW. (2010) Understanding the Carbon Footprint of Timber Transport in the United Kingdom. Sheffield, UK: North Energy Associates LTD. <u>https://www.researchgate.net/publication/</u> <u>312448400 Understanding the carbon</u> <u>footprint of timber transport in the Uni</u> <u>ted Kingdom</u>
Transport of wood to sawmill	The load capacity of road timber transport is limited by weight rather than volume, due to the weight of fresh roundwood (>400 kg/m ³). Therefore a 40-tonne vehicle with a load capacity of 25.5 tonnes can carry a maximum of 63.75m ³ in a load. It is assumed that timer haulage vehicles are not overloaded and that a typical load is 50m ³ .	Whittaker CL, Mortimer ND, Matthews RW. (2010) Understanding the Carbon Footprint of Timber Transport in the United Kingdom. Sheffield, UK: North Energy Associates LTD. <u>https://www.researchgate.net/publication/</u> <u>312448400 Understanding the carbon</u> <u>footprint of timber transport in the Uni</u> <u>ted_Kingdom</u>
Cultivation and harvesting of energy crops and on-farm transport to anaerobic digestion (AD) facility	Crop specific energy – litres of diesel for a typical yield for that crop in the UK - scaled for the field size and converted to kWh using Table 5. Assumption of 10% recoverable fibre by weight of input material. Assumption that 1 tonne of fibre has a volume of 2.7 m ³ . Apply 6% impact factor (Table 3).	Typical energy use for farm practices associated with energy crops are available from a range of sources. One example is the AD tool produced by the Bioenergy and Organic Resources Research Group at the University of Southampton available at: <u>https://borrg.soton.ac.uk/resources/</u>
Transport of crops to AD facility	Generally, energy crops are only transported within a 10- mile radius of the AD facility.	
Sheep farm	The average energy use by grazing livestock system per hectare is 444.44 kWh for Least Favoured Area Livestock Grazing and 1088.33 kWh for Lowland Grazing Livestock. Apply 3% impact factor (Table 3). Volume of wool will need to be converted to number of fleeces	Statistics on farm energy use in England was published in 2013 using the results of the 2011/2012 Farm Business Survey. Data is taken from Table 8 and converted to kWh. <u>https://www.gov.uk/government/statistics/</u> <u>farm-energy-use</u> Typical stocking densities on productive grass can be approximately 6 to 10

Production tier	Generic data	Source
	and then an area using stocking density data.	sheep per acre. But optimal stocking densities for some habitats will be considerably lower: <u>https://www.fas.scot/downloads/tn686-</u> <u>conservation-grazing-semi-natural-</u> <u>habitats/</u>
Transport of wool fleeces to collection hub	90% of British Wool members are within 1 hour of a British Wool distribution hub. Average speed on rural A roads in England in 2021 was 34.3 miles per hour. Assuming majority of distance wool travels from farm to British Wool distribution hub is by A roads, the wool travels a maximum distance of 30 miles.	Distance to distribution hubs: <u>https://www.britishwool.org.uk/ksupload/u</u> <u>serfiles/About/British%20Wool%20Repor</u> <u>t%20&%20Accounts%202022%20sprea</u> <u>ds.pdf</u> Average speeds on rural A roads in England are compiled annually by the Department of Transport. <u>https://www.gov.uk/government/statistics/</u> <u>travel-time-measures-for-the-strategic-</u> <u>road-network-and-local-a-roads-january-</u> <u>to-december-2021/travel-time-measures-</u> <u>for-local-a-roads-january-to-december-</u> <u>2021-report</u>
Cultivation and harvesting of oilseed rape	National average yields of OSR (seed) were 3.4 t/ha in 2022. At harvest 35% of the biomass is stored in each of the seed and the stem and 30% is stored in the seed pod walls. Therefore, average yields of OSR straw (stem plus empty seed pod) would be 7.2 t/ha. Energy use for the sowing, maintenance and harvesting of OSR is 115 litres of fuel per hectare.	Data on yields are compiled by the AHDB: https://ahdb.org.uk/oilseeds-market- outlook Data on growth stages of OSR come from the AHDB: https://ahdb.org.uk/knowledge- library/senescence-and-harvest-of- oilseed-rape-gs9 Data on energy use for OSR comes from table 7 of Richards, I. R. (2000) Energy balances in the growth of oilseed rape for biodiesel and of wheat for bioethanol. Report to the British Association for Bio Fuels and Oils. http://www.homepages.ed.ac.uk/jwp/rese arch/sustainable/levington/levington.pdf
Cork harvest	Cork is harvested manually. The extracted cork was traditionally stacked in the field and transported to the factory after 21 days. Nowadays, more producers (54% in 2019) choose the direct transport of cork to the factory on the day of extraction or the following days, avoiding the costs associated with the construction of the pile (labour, insurance, guard, etc.). 160 - 600 km depending on	https://repository.incredibleforest.net/oppl a-factsheet/20519
processor	the grade of cork for round trip journeys.	(2016) A carbon footprint simulation model for the cork oak sector. Science of the Total Environment 566: 499–511

Production tier	Generic data	Source
		https://doi.org/10.1016/j.scitotenv.2016.0
		<u>5.135</u> .

Documentary evidence required

- Supply chain map with distances and methods of transport
- Production/manufacturing fossil fuel energy use records (diesel, electricity etc.) and calculations
- Transport energy use calculations covering the whole supply chain, using standard distances and conversion factors where necessary.
- For renewable energy generated by company and used in processing or manufacture of material, documented evidence of energy generation and consumption.
- For energy obtained through green tariff, documented evidence of certification of the tariff through the Renewable Energy Guarantees of Origin (REGO) scheme or equivalent.

Improvement process

- Increasing use of renewable energy.
- Increase energy efficiency of production.

Water use (in extraction and production)

Figure 7: Water use (in extraction and production) scoring decision tree

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest Transport to manufacturer (water use assumed to be negligible) Processing and Production Up to the start of the mixing system Waste disposal by manufacturer 	 Construction of infrastructure Mixing system Bagging (including packaging) Office Transport from manufacturer to consumer Use/disposal by consumer
Imported finished products		 Bagging (including packaging) Transport from manufacturer to point of entry into country (water use assumed to be negligible)
Water	 Potable or abstracted water used for, e.g.: Irrigation Washing Industrial processes 	 Rain (direct) Harvested rainwater Reused water

Figure 8: Example water calculation

Potable water use at each stage of production is calculated (from starting point to end point (Table 1) and with consideration of percentage allocated impact at each stage of

production for virgin by-products (Table 2 and Table 3) and excluding out of scope water sources) and added together. Documentary evidence is required. Generic data for the first production stages of coir pith, wood-based materials and anaerobic digestate (from energy crops) (Table 4) are given in Table 9. Where data is missing from one or more sites or companies in a supply chain, an average of the other suppliers or sites at that tier of the supply chain can be used if the this does not apply to more than 10% of the volume of the material in that tier. See also Part 3: Worked examples.

Table 9: Generic data for uncertain supply chain tiers or where effort to collect specific data
is not justified (see Table 4) (water)

Production tier	Generic data	Source
Coconut small holding / plantation	Global average water footprint/embedded water for coconuts = 2669 m3 of water per ton. (1 ton of coconuts produce 1.9m3 of coir pith.) Regional assessments of the proportion supplied via irrigation need to be applied.	Mekonnen, M.M. and Hoekstra, A.Y. (2010) The green, blue and grey water footprint of crops and derived crop products, Value of Water Research Report Series No. 47, UNESCO-IHE, Delft, the Netherlands. <u>https://research.utwente.nl/en/publication</u> <u>s/the-green-blue-and-grey-water-</u> <u>footprint-of-crops-and-derived-crop-3</u> For selected regional data from the same source see Table 10.
Forest	 Forests in temperate regions such as the UK are un-irrigated. Water is not used in harvesting operations. Nurseries which irrigate to produce softwood trees use around 3.39 litres of water per m³ of standing wood. 	Pers. comm. Forestry Commission 2015.
Farm	Energy crops used to supply AD facilities and oilseed rape are typically un-irrigated in the UK.	
Sheep Farm	The average water use by grazing livestock system is 13,200 litres per livestock unit per year (13,000 litres for drinking water and 200 litres for washdown of buildings and equipment). Apply 3% impact factor (Table 3). Volume of wool will need to be converted to number of fleeces and then livestock units (one ewe is 0.15 LU).	Statistics on farm water use in England was published in 2011 using the results of the 2009/2010 Farm Business Survey. Data is taken from Table 2 and converted to litres. 31% of sheep farms had access to watercourses for drinking water (Table 3). Defra (2011): Water Usage in Agriculture and Horticulture, Results from the Farm Business Survey 2009/10 and the Irrigation Survey 2010 <u>https://docplayer.net/12177033-Water- usage-in-agriculture-and-horticulture- results-from-the-farm-business-survey- 2009-10-and-the-irrigation-survey- 2010.html</u>

Production tier	Generic data	Source
		Livestock unit data is taken from Table 1 of: <u>https://www.fas.scot/downloads/tn686-</u> <u>conservation-grazing-semi-natural-</u> <u>habitats/</u>
Cork forest/Farm	Traditionally cork forests are unirrigated. The use of drip irrigation during the first 10 years post planting is being explored to shorten the first harvest date.	

Table 10: Selected regional water footprints for coconuts

Sri Lanka	l	India					
Region	m³/t	Region	m³/t	Region	m³/t	Region	m³/t
Central	2942	Andhra Pradesh	2275	Haryana	1790	Orissa	2238
North Central	2741	Arunachal Pradesh	1398	Himachal Pradesh	1823	Pondicherry	2580
North Eastern	2556	Assam	1709	Jammu & Kashmir	1846	Punjab	1868
North Western	2851	Bihar	2092	Jharkhand	2039	Rajasthan	2310
Sabaragamuwa	3113	Chandigarh	-	Karnataka	2399	Sikkim	1920
Southern	3044	Chhattisgarh	2151	Madhya Pradesh	2372	Tamil Nadu	2449
Uva	2955	Dadra & Nagar Haveli	2784	Maharashtra	2416	Tripura	2120
Western	3060	Daman & Diu	2886	Manipur	1912	Uttar Pradesh	2179
Average	2914	Delhi		Meghalaya	1971	Uttaranchal	2186
		Goa	2648	Mizoram	2060	West Bengal	2080
		Gujarat	2495	Nagaland	1791	Average	2461

Source: <u>https://research.utwente.nl/en/publications/the-green-blue-and-grey-water-footprint-of-crops-and-derived-crop-3</u> (Volume 2)

Documentary evidence required

- Supply chain map.
- Excavation/production/manufacturing water use records for all production and manufacturing processes.
- Records of any rainwater harvesting or water recycling used.

Improvement process

- Increase water use efficiency (volume per m³ of product).
- Increase use of non-potable or non-abstracted water, e.g., by harvesting rainwater.
- Recycle/reuse water throughout the production process/supply chain.

Social compliance

		100%		20
		91 - 99%		19
		81 - 90%]	17
For what proportion of the supply chain can you prove you are		71 - 80%		15
compliant, via a fully documented		61 - 70%]	13
management process and an appropriate		51-60%)	11
audited social compliance		41 - 50%		9
programme throughout the supply chain	\frown	36 - 40%]→	7
		31 - 35%]	6
		26 - 30%		5
	\backslash	21 - 25%		4
		0 - 20%]_→[0

Figure 9: Social compliance scoring decision tree

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harve Transport to manufacturer Processing and Production Up to the start of the mixing system 	
Coir pith	 Starting point is Fibre Mill (Ta 4) 	able Coconut small holding/plantation Husk traders
Cork	 Starting point is the processo (Table 4) 	or × Forest/Farm
Wood-based materials	 ✓ Starting point is Sawmill (Tat 	ole 4) × Forest operations
Anaerobic digestate (from energy crops) and oilseed rape straw	 Starting point is the Farm (Ta 4) 	 The proportion of a farm that is not involved in energy crop production
All other materials	 Starting point is as set out in Table 1 	
Fourth level	Third level Se	cond level Primary level

Figure 10: Example social compliance calculation

The methodology used to prove social compliance for each company in each of the inscope tiers of the supply chain (Table 1 and Table 4) needs to be determined. Selfassessment questionnaires (which meet the minimum requirements of containing the questions set out in the 'self-assessment minimum requirements' spreadsheet and achieve no more than 2 major and/or 5 minor failures, see Annex 2) are valued at half of the value of third-party audits (Table 11). Self-assessment questionnaires which achieve more than 2 major and/or 5 minor failures have the same value as no assessment. Self-assessment questionnaires should be reviewed at least every two years.

Where no assessment has been carried out there is no proof of social compliance; assumptions cannot be made based on country of manufacture and compliance with local law. 100% coverage of all the in-scope tiers of the supply chain is not a requirement as excluding low volume material suppliers will not significantly affect the outcome.

The total level of proof is assessed across the supply chain with different weighting applied to each tier according to the length of the supply chain (Table 12); the further back along the supply chain the smaller contribution each tier makes to the score. The percentage allocated impact at each stage of production for virgin by-products (Table 2 and Table 3) is not currently applied. The level of proof at each tier is weighted by the volume of material supplied by each supplier in that tier. A tool has been developed which can be used to undertake this calculation (Figure 11). Documentary evidence is required.

Table 11: Relative value of different forms of proof of social compliance

Form of proof	Relative value
Third party audit	1
Self-assessment questionnaire	0.5
No assessment	0

Table 12: Contribution of each tier of the supply chain to the overall level of social	
compliance	

Number of	Primary level	Second	Third level	Fourth level	Fifth level
tiers	(manufacturer)	level			
1	100%				
2	60%	40%			
3	50%	30%	20%		
4	45%	30%	20%	5%	
5	44%	30%	20%	5%	1%

Figure 11: Social compliance ingredient rater tool

Compliance Ingredient Rate	r												
									Percentage				
	Number of tiers / steps in supply chain	Primary leve	el Second level	Third level	Fourth level	Fifth level	Overall Materi	ial Score	52.50				
Perlite	4		1 1	1	1								
Percentage of material obtain	ed from each supplier	by level					SAQ or Audit						
		Primary leve	el Second level	Third level	Fourth level	Fifth level			Primary level	Second level	Third level	Fourth level	Fifth level
Supplier	1	100	100	100	100		Supplier	1	SAQ	Audit	None	None	
	2							2					
	3							3					
	4							4					
	5							5					
	6							6	_				
	/	-					-		-				
	8						-	8	-				
	10						-	10	-				
	10						-	11	-				
	12							12					
	13							13					
	14							14					
	15							15					
	16							16					
	17							17					
	18							18					
	19							19					
	20							20		1			
Value must not exceed 100%		10	0 100	100	100	0							

Documentary evidence required

- Supply chain map including sources of all materials.
- Details of the social compliance process, including any internal checks of suppliers.
 - Transparency is obtained through the use of either an internal management system or an external management system such as Sedex or BSCI.
 - Self-assessment questionnaires may be used as proof (see Annex 2: Social compliance self-assessment questionnaire minimum requirements), but they are scored at a lower value than independent audits (Table 11).
 - Neither ISO14001 nor ISO9001 are acceptable proof. OHSAS18001 only offers partial proof as it does not cover the labour standards elements required but does cover the health and safety requirements.
- Risk assessments
- Certification to confirm successful independent audits throughout the supply chain.
- Independent audits of suppliers need to be conducted using recognised approaches such as SMETA, BSCI, SA8000 or similar.

Improvement process

Increase the proportion of the supply chain included in your social compliance programme.

Habitat and biodiversity

The habitat and biodiversity issues associated with land management and land use change for each of the most common bulk ingredients of growing media and soil improvers are too diverse to use a single scoring decision tree.

Nine different categories of bulk ingredient are considered in separate scoring decision trees or assessments:

- Peat
- Wood based material (including biochar from forestry products)
- Coir pith
- Minerals (other than peat)
- Recycled materials
- Agricultural crops (energy crops for AD, oil seed rape straw, farmed Sphagnum)
- Bracken
- Wool (sheep only)
- Cork

The same life cycle stage is in-scope throughout, i.e., extraction/growing and harvest.

Land used to develop the office and production plant is out of scope.

The impact allocated to virgin by-products at the extraction/growing and harvest production stage (Table 2 and Table 3) have already been built into the scoring decision trees (Figure 12 to Figure 18). The less complex scoring decision trees for wood-based materials (including biochar) (Figure 13), coir pith (Figure 14), agricultural crops (energy crops used to produce anaerobic digestate, oil seed rape straw) (Figure 16) and wool (Figure 18) reflect their lower allocated impacts (2.5-25%, 5%, 6-10% and 3% respectively).

At this early stage of development Sphagnum (farmed) uses the same decision tree as other agricultural crops despite having 100% of the allocated impact at the farm. This will be kept under review.

Any materials for which there is not an appropriate decision tree will need to be referred to the technical committee.

Peat

¹ that guarantees sufficient resource for restoration of the site

² published in company's public accounts NB: Company track record of restoration is not sufficient

³ appropriate to the country of the site (as demonstrated by restoring hydrological conditions)

⁴ Negative scores are rounded to zero

⁵ Where there is no Competent Authority an alternative external reviewer must be agreed with the Technical Committee

Figure 12: Habitat and biodiversity peat decision tree (100% allocated impact)

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest 	 Transport Processing and production Bagging (including packaging) Office/Production plant Use/disposal by consumer Re-use/recycling of waste
Recycled peat	 Waste peat removed from development sites; where removal of peat is not the purpose of development, i.e., the purpose is not peat extraction (for fuel or horticulture) and where it is demonstrated that excavation and removal is unavoidable. 	 Peat gathered from run-off from degraded habitats

Peat extracted from sites identified as a local, national or international conservation site or part of a protected landscape are excluded from this scheme. Any material from these sites (or product containing this material) cannot meet the scheme definition of responsible no matter what it scores on other criteria. Sites that are local, national and international conservation sites or protected landscapes will be those identified by statutory conservation bodies or regulating authorities and where formal notification has been given or is underway.

Figure 12 provides two sets of scores depending on when sites were developed or drained; if this occurred after 2011 the loss of biodiversity from site development is taken

into account in the scoring. The score is then modified (reduced by 2) at the end of the tree if the site's rehabilitation or restoration plan has not been approved by a licencing body or other competent authority, e.g., statutory conservation body. Where there is no competent authority, an alternative external reviewer must be agreed with the Technical Committee. Negative scores should be rounded to zero.

The guaranteed funding for the restoration/rehabilitation of the site after extraction ceases must be sufficient for the restoration of the site. Where this is achieved via ring fenced company funds, this must be published in company's public accounts and there needs to be a clearly stated and published company policy. A track record of restoration on other sites is not accepted as a guarantee. Biodiversity offsetting cannot be used in place of guaranteed funding for restoration of the extraction site.

A replacement peat forming habitat is scored most highly. However, the type of peat forming habitat is not specified; it should be appropriate to the country of the site. If the planned peat forming habitat will not cover more than 65% of the site, the score for other wetland habitat should be used. If the planned restoration for the site is not for a biodiversity primary purpose this does not achieve a score above zero for habitat and biodiversity.

Documentary evidence required (each site)

- Supply chain map including sources of peat.
- Evidence that the site has not been identified as a local, national or international conservation site or part of a protected landscape.
- Proof of development/drainage start date.
- Restoration/rehabilitation plan including proof that this has been approved by a licencing body or other competent authority, e.g., statutory conservation body.
- Proof of provision to guarantee the financing of restoration including documentation of the method of guarantee (and associated policy where relevant) and that the funds will be sufficient to deliver the restoration plan.
- Proof of source of recycled peat and that excavation and removal of peat at that site is unavoidable.

Improvement process

- Ensure that there is financial provision to fund restoration and increase the level of guarantee of this funding.
- Target restoration to habitats which have higher scores.
- Gain approval of restoration plans.

Wood-based material

Figure 13: Habitat and biodiversity wood-based material decision tree (2.5, 4.4, 7, 8.8, 12.5 and 25% allocated impact)

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest 	 Transport Processing and production Bagging (including packaging) Office/Production plant Use/disposal by consumer Re-use/recycling of waste
Wood	 Softwood (virgin or recycled) Hardwood (virgin or recycled) 	

As per Table 4, it is not always possible to go back to the proposed starting point for woodbased materials. However, the starting point for wood-based materials is not modified for the habitat and biodiversity criterion as a proxy approach is applied.

Various scheme and methodologies exist for the assessment of whether wood and wood products are sourced from sustainably managed forests. Whilst many of them do not formally assess the impact on habitat and biodiversity, for the purposes of this assessment they are assumed to act as a suitable proxy, i.e., sustainably managed forests are assumed to have lower detrimental impacts on habitat and biodiversity than those which are not.

As per Table 2 wood-based virgin by-products are allocated different levels of impact for different production stages. For the in-scope life cycle stage (the forest) the allocated levels of impact are 7% for bark, 12.5% for sawdust (and shavings and wood fines) and 25% for woodchips. When wood-based products undergo pyrolysis to produce biochar there are additional products produced (bio-oil and gas), which further reduces the impact at the forest for these materials. Therefore, for Biochar (from forestry products) the allocated impacts are 2.5% for biochar from bark, 4.4% for biochar from sawdust and 8.8% for biochar from woodchips.

Figure 13 provides 2 choices of score at each of the scoring points; these take into account the different allocated levels of impacts. Biochar from bark and sawdust should use the first column of scores (left), Bark and sawdust-based products and biochar from woodchips should use the second column of scores (middle) and wood chip-based products should use the third column (right).

Documentary evidence required

- Supply chain map including sources of wood-based materials.
- The source of material (virgin by-products and recycled material).
- That material comes from a sustainably managed forest. Could include:
 - o Independent third-party certification.
 - o Recognised national/retailer schemes.
 - Recognised country of origin risk assessment (low risk) (e.g., FSC Controlled Wood National Risk Assessment) (material relying on this proof alone should not be included in % calculation).
- Membership/certification to appropriate scheme.
- Total amount of material handled, detailing level of certification or other qualifying proof (i.e., not country of origin risk assessment).

Improvement process

• Increase the level of qualifying proof (i.e., excluding country of origin risk assessment).

Figure 14: Habitat and biodiversity coir pith decision tree (5% allocated impact)

	In scope	Out of scope
Life cycle stages	✓ Extraction/growing and harvest	 Transport Processing and production Bagging (including packaging) Office/Production plant Use/disposal by consumer Re-use/recycling of waste

As per Table 4, it is not always possible to go back to the proposed starting point for coir pith. However, the starting point for coir pith is not modified for the habitat and biodiversity criterion as an alternative regional assessment approach is available for use where the specific growing location of the material cannot be traced due to the complexity of the supply chain.

As per Table 3 virgin by-products (including coir pith) are allocated different levels of impact for different production stages. For the in-scope life cycle stage (coconut production) the allocated level of impact is 5%. Figure 14 takes the 5% level of impact into account.

Documentary evidence required

- Supply chain map including sources of coir pith/coconuts.
- Documentary evidence of the source of material.
- For known specific location sourced materials:
 - Evidence of previous land use.
 - Evidence of first cultivation date for coconuts.
 - Evidence of cultivation system (monocrop, etc.).
- For regional assessment:
 - Evidence of regional land use change to deliver any expansion of coconut production.

Improvement process

- Source from known small holdings / plantations.
- Source from areas which have not expanded coconut production into non-agricultural areas in the last 10 years.

Minerals

¹ Where there is no Competent Authority an alternative external reviewer must be agreed with the Technical Committee

² that guarantees sufficient resource for restoration of the site

³ published in company's public accounts NB: Company track record of restoration is not sufficient

Figure 15: Habitat and biodiversity mineral-based material decision tree (100% allocated impact)

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest 	 Transport Processing and production Bagging (including packaging) Office/Production plant Use/disposal by consumer Re-use/recycling of waste

Minerals extracted from sites identified as a local, national or international conservation site or part of a protected landscape are excluded from this scheme. Any material from these site (or product containing this material) cannot meet the scheme definition of responsible no matter what it scores on other criteria. Sites that are local, national and international conservation sites or protected landscapes will be those identified by statutory conservation bodies or regulating authorities and where formal notification has been given or is underway.

The guaranteed funding for the restoration/rehabilitation of the site after extraction ceases must be sufficient for the restoration of the site. Where this is achieved via ring fenced company funds, this must be published in company's public accounts and there needs to be a clearly stated and published company policy. A track record of restoration on other sites is not accepted as a guarantee. Biodiversity offsetting cannot be used in place of guaranteed funding for restoration of the extraction site.

If the planned restoration for the site is not for a biodiversity primary purpose across at least 50% of the site it does not achieve a score above zero for habitat and biodiversity.

Documentary evidence required (each site)

- Supply chain map including sources of minerals.
- Evidence that the site has not been identified as a local, national or international conservation site or part of a protected landscape.
- Restoration/rehabilitation plan including proof that this has been approved by a licencing body or other competent authority, e.g., statutory conservation body.
- Proof of provision to guarantee the financing of restoration including documentation of the method of guarantee (and associated policy where relevant) and that the funds will be sufficient to deliver the restoration plan.
- Proof of source of recycled minerals.

Improvement process

- Ensure that there is financial provision to fund restoration and increase the level of guarantee of this funding.
- Increase the area of the site which has biodiversity as the primary purpose of restoration.
- Gain approval of restoration plans.

Recycled materials

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest 	 Transport Processing and production Bagging (including packaging) Office/Production plant Use/disposal by consumer Re-use/recycling of waste

As per Table 1 the starting point for recycled materials is the point at which the volume becomes commercially viable to transport (and not from the point of extraction/growing and harvest – the in-scope life cycle stage). Therefore, recycled materials are assumed to have no direct impact on habitat and biodiversity and score 20.

Agricultural crops (energy crops for AD, oilseed rape straw, farmed Sphagnum)

Farm level not field level assessment

Weighted average score to be generated for batches from multiple farms

Figure 16: Habitat and biodiversity agricultural crops decision tree (6-10% allocated impact)

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest 	 Transport Processing and production Bagging (including packaging) Office/Production plant Use/disposal by consumer Re-use/recycling of waste
Sphagnum	 Sphagnum (farmed) Source material for Sphagnum (farmed) is from micropropagation, use of a bioreactor or other method that utilises small amounts of starting material for upscaling 	 Wild harvested Sphagnum (both as a bulk material for growing media and as a source material for Sphagnum farming)

As per Table 4, the effort to collect specific data from the proposed starting point is not always justified for anaerobic digestate (from energy crops) and oilseed rape straw. However, the starting point for anaerobic digestate (from energy crops) and oilseed rape straw is not modified for the habitat and biodiversity criterion and a weighted average farm approach is applied for both energy crops and oil seed rape straw.

As per Table 3 virgin by-products (including anaerobic digestate (from energy crops) and Oilseed rape straw) are allocated different levels of impact for different production stages. For the in-scope life cycle stage (farm) the allocated level of impact is 6% and 10% respectively. Figure 16 takes the 6-10% level of impact into account.

At this early stage of development Sphagnum (farmed) uses the same decision tree as other agricultural crops despite having 100% of the allocated impact at the farm. This will be kept under review.

Where energy crops, oilseed rape straw or farmed Sphagnum are sourced from multiple farms an individual score should be generated for each farm. The annual volume of materials supplied by each farm should be used to generate a weighted average score for the anaerobic digestate (from energy crops), oilseed rape straw or Sphagnum (farmed).

Documentary evidence required

- Supply chain map including sources of agricultural crops.
 - Documentary evidence of the source of material:
 - Evidence of previous land use.
 - Evidence of first cultivation date for agricultural crops.
- Documentary evidence that the farm is in a higher-level environmental scheme (applicable scheme to the country of origin) or is being managed to an equivalent standard.

Improvement process

- Source from farms where land use change from semi-natural habitat has not occurred immediately prior to the commencement of agricultural crop production.
- Source from farms which are able to demonstrate high levels of environmental management.

Figure 17: Habitat and biodiversity bracken decision tree (100% allocated impact)

	In scope	Out of scope
Life cycle	 Extraction/growing and harvest 	× Transport
stages		 Processing and production
		 Bagging (including packaging)
		 Office/Production plant
		 Use/disposal by consumer
		 Re-use/recycling of waste

Where bracken is sourced from multiple sites an individual score should be generated for each site. The annual volume of materials supplied by each site should be used to generate a weighted average score for Bracken.

Documentary evidence required

- Supply chain map including sources of bracken.
- Documentary evidence that bracken management is carried out following a bracken management plan, that this management plan follows best practice guidance and that it has regulatory approval (where required or as needed). One example of best practice guidance is Natural England Technical Information Note TIN048 - Bracken management and control. <u>http://publications.naturalengland.org.uk/publication/35013</u>

Improvement process

- Source from locations which follow a bracken management plan which complies with best practice guidance.
- Source from locations that follow a bracken management plan which has had Regulator approval.

Figure 18: Habitat and biodiversity Wool (sheep only) decision tree (3% allocated impact)

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest 	 Transport Processing and production Bagging (including packaging) Office/Production plant Use/disposal by consumer
		 Re-use/recycling of waste

As per Table 4, the effort to collect specific data from the proposed starting point is not always justified for wool. However, the starting point for wool is not modified for the habitat and biodiversity criterion and a weighted average farm approach is applied.

As per Table 3 virgin by-products (including wool) are allocated different levels of impact for different production stages. For the in-scope life cycle stage (farm) the allocated level of impact is 3%. Figure 18 takes the 3% level of impact into account.

Where wool fleeces are sourced from multiple farms an individual score should be generated for each farm. The annual volume of materials supplied by each farm should be used to generate a weighted average score for the wool.

Optimal stocking densities for sheep on different UK habitats can be found at: <u>https://www.fas.scot/downloads/tn686-conservation-grazing-semi-natural-habitats/</u>

Documentary evidence required

- Supply chain map including sources of wool.
- Documentary evidence of the source of material
- Location of farm (upland vs lowland). To meet the definition of an upland sheep farm, the sheep should spend the majority of their life cycle in an upland extensive grazing system.
- Evidence that sheep grazing is being used as part of a habitat conservation plan if not in an upland extensive grazing system.
- Documentary evidence of the stocking density of sheep on each of the habitat types present on the farm.

Improvement process

• Source from farms where the stocking density is less than or equal to that of the optimum stocking density for the habitat being grazed.

Cork		
	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest 	 Transport Processing and production Bagging (including packaging) Office/Production plant Use/disposal by consumer Re-use/recycling of waste

There is agreement in the literature that the harvesting of cork is beneficial for habitat and biodiversity at the site level and that the economic value of harvested cork is beneficial in conserving and retaining these valuable habitats at a landscape or national level. Therefore, all sources of cork are allocated a score of 20.

Documentary evidence required

Supply chain map.

Improvement process

None.

Pollution

Figure 19: Pollution scoring decision tree

	In scope	Out of scope
Life cycle stages	 Extraction/growing and harvest Processing and Production Up to start of mixing system 	 Mixing system Bagging (including packaging) Transport to manufacturer Transport from manufacturer to consumer Use/disposal by consumer
Pollutants (which can impact on human health and/or the environment)	 ✓ Solid (including dust) ✓ Liquid (including spillage of fuel used by handling machinery) ✓ Gaseous (including odour) 	 Those arising from energy/fuel use by handling machinery Greenhouse gases Those for which there are no current legal targets for individual businesses to comply with
Coir pith	 Starting point is Fibre Mill (Table 4) 	 Coconut small holding/plantation Husk traders
Cork	 ✓ Starting point is the processor (Table 4) 	× Forest/Farm
Wood based materials	 ✓ Starting point is Sawmill (Table 4) 	 Forest operations
Anaerobic digestate (from energy crops)	 Starting point is the AD facility (Table 4) 	 Farm (digestate responsible for 6% of impact)

Oilseed rape straw	 Starting point is the farm (Table 4) 	
All other materials	 Starting point is as set out in Table 1 	

Potential pollution hotspots throughout the supply chain need to be identified (Figure 20). If no one is monitoring effluent or emissions at a site, be it the company or the regulator, then no control of harmful pollution can be assumed and a score of zero is given. The number of enforcement actions from regulators over the last 12 months for each supplier needs to be determined. If a supplier has no enforcement actions over the last 12 months, then a higher score can be generated using the Pollution Questionnaire tool (Figure 21). Evidence is required that appropriate pollution controls and mitigations are in place.

Figure 20: Example pollution calculation

Figure 21: Pollution questionnaire example

Storage of materials		Yes/No	Change Score
Are you storing materials on site	Do you have a bund around your storage site for diesel and other liquids?	Yes	2
appropriately?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	Yes	_
	Are your bulk raw materials stored appropriately to limit runoff?	Yes	_
Waste			
Are you collecting, appropriately storing and	Plastics (stored under cover or collated for collection)	Yes	2
disposing of waste?	Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)	Yes	
	Waste created in the processing of materials (stored in a designated area with appropriate controls)	Yes	
Air pollution			
Are you mitigating the risk of air pollution from your bulk raw materials?	Have you conducted a risk assessment of air pollution impact?	Yes	2
	Is your air pollution impact high, medium or low?	Low	
	Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)		
	Change from base score of 12 (zero enforcement actions)		6
	Score		18

The total level of pollution control is assessed across the supply chain with different weighting applied to each tier according to the length of the supply chain (Table 13); the further back along the supply chain the smaller contribution each tier makes to the score (this is the approach for the Social Compliance criteria). The percentage allocated impact at each stage of production for virgin by-products (Table 2 and Table 3) is not currently applied. The level of pollution control at each tier is weighted by the volume of material

supplied by each supplier in that tier. A tool has been developed which can be used to undertake this calculation (Figure 22). Documentary evidence is required. See Part 3: Worked examples. 100% coverage of all the in-scope tiers of the supply chain is not a requirement as excluding low volume material suppliers will not significantly affect the outcome.

Number of	Primary level	Second	Third level	Fourth level	Fifth level
tiers	(manufacturer)	level			
1	100%				
2	60%	40%			
3	50%	30%	20%		
4	45%	30%	20%	5%	
5	44%	30%	20%	5%	1%

Table 13: Contribution of each tier of the supply chain to the overall level of pollution

Figure 22: Pollution rater tool

If extraction only occurs for part of the year consideration of the impact of extraction should not be limited to the period of active extraction but should also consider the extraction site during its inactive phase.

Documentary evidence required

- Supply chain map including sources of all materials and known potential pollutant hotspots.
- Records of enforcement actions.
- Details of legally binding mitigation agreement.
- Monitoring records.
- Completed pollution questionnaires and supporting documentation of the measures recorded.
- Pollution rater records.

Improvement process

• Put in place appropriate pollution control measures as identified in the pollution questionnaire.

Renewability

Renewable Y 20 at the same Y Renewable site within 5 17 Ν at the same years? site within 50 Y Renewable N years? at the same 15 site within 100 years? Ν 1

Figure 23: Renewability decision tree

	In scope	Out of scope
Life cycle	✓ Formation of virgin deposits	 Extraction/harvest
stages	 Growth of virgin materials 	 Transport Manufacturing
		0
		 Use/disposal by consumer
Recycled	 Formation/growth of virgin 	 Rate at which waste is generated
materials	material being generated at a site	
Renewability ^a	 Replacement time of the material 	 Global replacement rates
	within living cycles at the same	 National replacement rates
	site.	 Company replacement rates

Notes:

a. This is also a proxy for the impact of the material on atmospheric carbon dioxide levels and carbon cycling through the period over which emitted carbon dioxide is recaptured through the regrowth of the raw material on the same site.

Table 14: Renewability decision tree: expected scores for materials

Material ^a , ^b	Comment	Score
Husks and shells from food crops (includes	Plant based material which is renewable	20
coir pith)	within five years (annually) at same site	
Green compost (including worm compost	Plant based material which is renewable	20
and composted bracken) and anaerobic digestate	within five years (annually) at same site	
Bracken, oilseed rape straw, Sphagnum	Plant based material which is renewable	20
(farmed)	within five years at same site	
Wool	Animal by-product which is renewable	20
	within five years (annually) at same site	
Cork	Usually derived from the cork oak	17
	(Quercus suber) with repeat harvest from	
	the same tree every 9-12 years.	
	Therefore, is renewable within 50 years,	
	but not within five years at the same site	
Softwoods (wood-based material, including	Usually derived from conifers which are	17
wood fibre, bark and biochar (from forestry	renewable within 50 years, but not within	
products))	five years at the same site	
Hardwoods including biochar (from forestry	Renewable within 100 years	15
products)		
Minerals including vermiculite, perlite,	Not renewable within 100 years at the	1
rockwool, sand, grit, topsoil, clay granules	same site	

Material ^a , ^b	Comment	Score
Peat	Not normally considered renewable within 100 years at the extraction site, unless demonstrated otherwise on a site- by-site basis	1
Plastics and petrochemical derived products	Not renewable within 100 years at the same site	1

Notes:

- a. If a recycled material is composed of a number of materials which would have different scores a weighted average should be calculated.
- b. Biochar may be created from a range of materials. The score allocated should be for the material(s) which has undergone the pyrolysis process.

Documentary evidence required

- Evidence of materials used.
- Proportion of each material used in final product.
- For wood-based material species used, differentiating between hardwood/softwood.
- For peat, where potentially renewable within 100 years, documented:
 - evidence of peat type (sphagnum/sedge).
 - o peat extraction plan including depth excavated annually.
 - o site restoration plan including timescales.

Improvement process

• There is limited potential for an improvement process for most materials within this criterion as a material cannot be made more renewable. Improvement is achieved by replacement of non- or less-renewable materials with more renewable materials or, for example, by switching from hardwood to softwood.

Resource use efficiency

Figure 24: Resource use efficiency scoring decision tree

	In scope	Out of scope
Life cycle	 Extraction/growing and harvest 	× Mixing system
stages	 Processing and Production 	 Bagging (including packaging)
	 To start of the mixing system 	 Use/disposal by consumer
Generated	 Unwanted material from 	 Material which is used to produce
waste sources	production disposed of to landfill	a by-product
	 Physical contaminants screened 	 Packaging materials used to
	out of input materials	transport materials between
		companies in the supply chain
Recycled	 Processing and Production 	× Transport
materials		× Offices
processing		
energy		
Coir pith	 Starting point is Fibre Mill (Table 	 Coconut small holding/plantation
	4)	 Husk traders
Cork	 Starting point is the processor (Table 4) 	✗ Forest/Farm
Wood-based	✓ Starting point is Sawmill (Table 4)	 Forest operations
materials		
Anaerobic	✓ Starting point is AD facility (Table	 Farm (digestate responsible for
digestate (from	4)	6% of impact)
energy crops)		
Oilseed rape	 Starting point is Growing media 	 Farm (oilseed rape straw
straw	manufacturer (Table 4)	responsible for 10% of impact)
All other	 Starting point is as set out in 	
materials	Table 1	

Out of scope Transport from Mushroom grower to Growing media manufacturer = BB kWh/m³

Growing media manufacturer = CC kWh/m³

Figure 25: Example calculation of processing energy for a recycled material with no inscope waste generated

Where the material is recycled with no in-scope waste generated, the calculations used for the energy criterion should be used here to calculate processing energy. Transport energy use is out of scope so should be excluded from the total. Therefore, processing energy use in the example shown in Figure 25 is AA+CC kWh/m³. The score is dependent on whether this value is < or > 8.1 kWh/m³. See Part 3: Worked examples.

Figure 26: Example calculation for resource use efficiency

The score for the supply chain is based on the total volume of unrecycled waste as a proportion of the input materials. Identify the volume of in-scope waste generated for each part of the supply chain; then calculate the proportion of unrecycled waste as a % of input materials. Average the % unrecycled waste for each tier of the supply chain based on the proportion of the material supplied by each company, then add together the % unrecycled waste for all of the tiers. Documentary evidence is required. See Part 3: Worked examples.

Documentary evidence required

- Evidence of materials used.
- Energy records use during processing for recycled materials (kWh/m³).
- Volume of input materials (m³).
- Volume of in-scope waste generated during production (m³).
- In-scope waste as a proportion of input material (%).

Improvement process

- There may be limited opportunity for a material to improve its score unless the amount of waste generated can be reduced.
- Improvement is achieved by replacement of materials by others which have a better resource efficiency profile.

Consideration of carbon emissions and climate change

	In scope of other criteria ^a	Out of scope ^b
Carbon and climate change	 Fossil fuel use in extraction, transport and production (see Energy use (in extraction, transport and production) criterion) Land use change and loss/creation of carbon storing habitats (see Habitat and biodiversity criterion) Carbon turnover and cycling with the atmosphere (see Renewability criterion) Reuse and recycling of materials to limit emissions (see Resource use efficiency criterion) 	 Greenhouse gas emissions Loss of carbon sinks

Notes:

- a. Many of the criteria include elements of carbon and climate change, a separate criterion would lead to double counting. For example, the renewability criterion, due to its consideration of the long-term sustainability of the material through its replacement time on site, is already capturing the impact of the substrate on atmospheric carbon dioxide levels and carbon cycling by means of the period over which emitted carbon dioxide is recaptured by the regrowth of the raw material on the same site.
- b. These are presently out of scope due to a lack of suitable methodology for their inclusion. In time it is intended that these will become in-scope.

Part 3: Worked examples

The following worked examples are designed to demonstrate the thought processes and data required to complete the calculations and generate a score. They are not real examples but are based on available literature where possible.

Except where standard data is used from the tables in Parts 1 and 2 of this document, the data presented should not be treated as standard data. This data will need to be replaced with actual data specific to the supply chain being scored.

Material 1: Wood fibre produced by Company 1

This is manufactured from a virgin material (by-product) (Table 1); therefore, the starting point for this material is the forest. However, as per Table 4, for some criteria (energy use and water use) generic data should be used at the forest and for transport to the sawmill (unless site specific data is available) and for other criteria (social compliance, pollution, and resource use efficiency) the starting point for assessment is the sawmill. The end point is the start of the mixing system (Table 1).

The material is produced from wood chips; therefore, per Table 2 it is responsible for 25% of the impact at the forest, 25% of the impact at the sawmill and 100% of the impact after the sawmill (e.g., processing of wood chips into wood fibre) up to the mixing system.

1 m³ of wood chips produces 3 m³ of extruded wood fibre (Company 1).

Supply chain map for Company 1 wood fibre

August 2024

Energy use (in extraction, transport and production)

As per Table 4, generic data should be used for the operations in the forest and for transport of material to the sawmill.

As per Table 8, UK forests use 6.8 kWh per m³ of wood for site preparation and establishment (excluding building and maintaining

forest roads – construction of infrastructure is out of scope). Diesel fuel consumption for felling is estimated at 1.2 litres per m³ of biomass and for forwarding at 0.9 litres per m³ of biomass (Table 8). 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). Wood chips are responsible for 25% of the impact at the forest (Table 2). 1m³ of wood chips produces 3m³ of wood fibre. Therefore, the energy use at the forest that the wood fibre is responsible for ((6.8 + (1.2*10.55) + (0.9*10.55))*0.25)/3 = 2.41 kWh/m³.

The average timber haulage distance is 82 km (164 km for the round trip as the return journey for empty vehicles is in scope) (Table 8). 20% of the journey is on forest roads (Table 8). Fuel use (diesel) is 0.459 l/km for forest roads and 0.342 l/km for public roads (Table 8). 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). The load capacity of road timber transport is limited by weight rather than volume, due to the weight of fresh roundwood (>400 kg/m³) (Whittaker et al, 2010). Therefore a 40-tonne vehicle with a load capacity of 25.5 tonnes can carry a maximum of $63.75m^3$ in a load. It is assumed that the vehicle is not overloaded and that a typical load is $50m^3$. Wood chips are responsible for 25% of the impact of transport from the forest to the sawmill (Table 2). $1m^3$ of wood chips produces $3m^3$ of wood fibre.

= (((((164*0.2*0.459) + (164*0.8*0.342))*10.55)/50)*0.25)/3 = 1.05 kWh/m³

Sawmill 1 uses S kWh per m³ of roundwood. Wood chips are responsible for 25% of the impact at the sawmill (Table 2). $1m^3$ of wood chips produces $3m^3$ of wood fibre. Therefore, fossil fuel energy use is S*0.25/3 = SS kWh/m³.

Sawmill 2 uses T kWh per m³ of roundwood. Wood chips are responsible for 25% of the impact at the sawmill (Table 2). $1m^3$ of wood chips produces $3m^3$ of wood fibre. Therefore, fossil fuel energy use is T*0.25/3 = TT kWh/m³.

55% of the wood chips purchased by Company 1 come from Sawmill 1 and the remaining 45% from Sawmill 2. Therefore, average annual energy use at the sawmill is $SS*0.55 + TT*0.45 = AA kWh/m^3$.

Wood chips are transported 20km by road from Sawmill 1 to Company 1 (the return journey for empty vehicles is out of scope – third party haulage). A typical load is Xm³. The articulated lorry (>33 tonnes) uses 3.57 kWh per kilometre in diesel (Table 6, average weight laden). $1m^3$ of wood chips produces $3m^3$ of wood fibre. Therefore, the fossil fuel energy use for transport of the wood chips to Company 1 is ((20*3.57)/X)/3 = 23.8/X = M kWh/m³ (Sawmill 1).

Wood chips are transported 100km by road from Sawmill 2 to Company 1 (the return journey for empty vehicles is out of scope – third party haulage). A typical load is Xm³. The

August 2024

articulated lorry (>33 tonnes) uses 3.57 kWh per kilometre in diesel (Table 6, average weight laden). $1m^3$ of wood chips produces $3m^3$ of wood fibre. Therefore, the fossil fuel energy use for transport of the wood chips to Company 1 is (($100^*3.57$)/X)/3 = 119/X = N kWh/m³ (Sawmill 2).

55% of the wood chips purchased by Company 1 come from Sawmill 1 and the remaining 45% from Sawmill 2. Therefore, average annual energy use to transport wood chips from the sawmill is $M^*0.55 + N^*0.45 = BB \ kWh/m^3$.

Non-renewable energy use at Company 1 to convert wood chips into wood fibre is 10 kWh of electricity per m³ of fibre and 3 L of diesel per m³ of fibre. 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). = 10 + (3*10.55) = 41.65 kWh/m³.

Therefore, the total non-renewable energy used from forest to the mixing system is $2.41+1.05+AA+BB+41.65 \text{ kWh/m}^3 = 45.11+AA+BB \text{ kWh/m}^3$. Assuming that (AA+BB) < 120.89 kWh/m³ the material scores 6 (Figure 5) (if (AA+BB) < 54.89 kWh/m³ the material score would be 8).

Water use (in extraction and production)

As per Table 4, generic data should be used for the operations in the forest.

As per Table 9 UK forests are un-irrigated so no potable or abstracted water is used. No water is used in harvesting the forest. The tree nursery is assumed to be irrigated and uses 3.39 L of water per m³ of wood (Table 9). Wood chips are

responsible for 25% of the impact at the forest (Table 2). $1m^3$ of wood chips produces $3m^3$ of wood fibre. Therefore, wood fibre is responsible for $(3.39*0.25)/3 = 0.28 \text{ L/m}^3$.

Use of water at the sawmill is negligible (Pers. Comm. Forestry Commission, 2015).

Potable or abstracted water used at Company 1 to convert wood chips into wood fibre is $0.1 \text{ m}^3/\text{m}^3$ of fibre. At a conversion rate of $1 \text{ m}^3 = 1000 \text{ L}$ this is 100 L/m^3 .

Therefore, the total potable or abstracted water used from forest to mixing system is $0.28+0+100 = 100.28 \text{ L/m}^3$ and the material scores 16 (Figure 7).

Social compliance

The social compliance assessment for woodbased materials begins at the sawmill (Table 4). Company 1 has completed a self-assessment questionnaire to demonstrate social compliance. As per Table 11, this is valued at 0.5 of an audited third-party assessment. Neither Sawmills (1 and 2) have undertaken any form of assessment and have no proof of their social compliance.

The level of proof of social compliance, as calculated using the social compliance calculator is 30% and the material scores 5 (Figure 9).

Compliance Ingredient Rate	FI								Percentage				
Growing media material type	Number of tiers / steps in supply chain	Primary level	Second level	Third level	Fourth level	Fifth level	Overall Mater	ial Score	30.00				
Wood fibre	2	1	2										
Percentage of material obtain	ned from each supplier	by level					SAQ or Audit						
			Second level	Third level	Fourth level	Fifth level			Primary level		Third level	Fourth level	Fift
Supplier	1	100	55 45				Supplier	1	SAQ	None None			
	2		45				-	2	-	None			
	4							4	1				
	5							5					
	6						_	6					
-	8						_	7	-				
- <mark>- Andreas and Andre</mark>	9						-	9	-				
	10							10					
	11							11					
_	12						_	12	_				
-	13						-	13 14	-				
-	15						-	15	-				
	16							16					
	17						_	17					
-	18						_	18 19	-				
-	19 20					-	-	20	-				
Value must not exceed 100%	-												
		100	100	0	0) 0							

Habitat and biodiversity

Wood fibre is a wood-based material; therefore, the wood-based material tree applies. All of the wood sourced by Company 1 is from the UK and, therefore, comes from sustainably managed forests (or has a low risk of not coming from a sustainably managed forest - FSC Controlled Wood National Risk Assessment). Company 1 is Forest Stewardship Council Chain of Custody Certified; with a rolling average input of 72% FSC material. Wood chips are responsible for 25% of the impact at the forest (Table 2). Therefore, the habitat and biodiversity score for this material is 13 (Figure 12, column 3).

Pollution

The pollution assessment for wood-based materials begins at the sawmill (Table 4).

The IFC (2007) identify potential pollution hotspots from sawmills as wood dust, volatile organic compounds and wastewater effluent generated from runoff from irrigated storage areas known as log yards.

The Environment Agency monitors emission to air and water by Sawmills 1 and 2 and Company 1. They have brought no enforcement actions against any of the companies. Therefore, as per Figure 19 the pollution questionnaire should be used to determine the score.

Sawmills 1 and 2 and Company 1 have

completed a pollution questionnaire. The pollution score for Sawmill 1 is 10, for Sawmill 2 is 15, and for Company 1 is 18.

ution questionn	naire			
Company		Sawmill 1		
			Answer	
Storage of	of materials		Yes/No	Change Scor
	oring materials on site	Do you have a bund around your storage site for diesel and other liquids?	Yes	2
appropriate	ely?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	Yes	1
		Are your bulk raw materials stored appropriately to limit runoff?	Yes	1
Waste				
	Are you collecting, appropriately storing and disposing of waste?	Plastics (stored under cover or collated for collection)	No	-2
disposing of		Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)	No	
		Waste created in the processing of materials (stored in a designated area with appropriate controls)	No	
Air pollu	tion			
	tigating the risk of air pollution oulk raw materials?	Have you conducted a risk assessment of air pollution impact?	No	-2
		Is your air pollution impact high, medium or low?		7
		Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)		1
		Change from base score of 12 (zero enforcement actions)		-2
		Score		10

August 2024

Towards Responsible Sourcing and Manufacture of Growing Media Pollution questionnaire

Company	Sawmill 2		
· · ·		Answer	
Storage of materials		Yes/No	Change Score
Are you storing materials on site	Do you have a bund around your storage site for diesel and other liquids?	Yes	2
appropriately?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	Yes	
	Are your bulk raw materials stored appropriately to limit runoff?	Yes	
Waste			
Are you collecting, appropriately storing and	Plastics (stored under cover or collated for collection) Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)		-1
disposing of waste?			
	Waste created in the processing of materials (stored in a designated area with appropriate controls)	No	
Air pollution			
Are you mitigating the risk of air pollution from your bulk raw materials?	Have you conducted a risk assessment of air pollution impact?	Yes	2
	Is your air pollution impact high, medium or low?	High	7
	Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)	Yes	
	Change from base score of 12 (zero enforcement actions)		3
	Score		15

Towards Responsible Sourcing and Manufacture of Growing Media Pollution guestionnaire

Company	Company 1		
		Answer	
Storage of materials		Yes/No	Change Score
Are you storing materials on site	Do you have a bund around your storage site for diesel and other liquids?	Yes	2
appropriately?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	Yes	
	Are your bulk raw materials stored appropriately to limit runoff?	Yes	
Waste			
Are you collecting, appropriately storing and	Plastics (stored under cover or collated for collection)	Yes	2
disposing of waste?	Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)	Yes	
	Waste created in the processing of materials (stored in a designated area with appropriate controls)	Yes	
Air pollution			
Are you mitigating the risk of air pollution from your bulk raw materials?	Have you conducted a risk assessment of air pollution impact?	Yes	2
	Is your air pollution impact high, medium or low?	Medium	
	Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)	Yes	
	Change from base score of 12 (zero enforcement actions)		6
	Score		18

The pollution ingredient rater has been used to generate an overall score (using the weighting in Table 13). 55% of the wood chips purchased by Company 1 come from Sawmill 1 and the remaining 45% from Sawmill 2. The overall pollution score is 15.70.

Renewability

The material is derived from softwood which is renewable at a single site within 50 years, but not within 5 years (Table 14). Therefore, the material score is 17 (Figure 23).

Resource use efficiency

The resource use efficiency assessment for wood-based materials begins at the sawmill (Table 4). The wood chips are a virgin by-product (Table 1) and no in-scope waste is generated in their production. Therefore, the material score is 15 (Figure 24).

Summary: material score

The material score is:

Criteria	Score
Energy	6
Water	16
Social compliance	5
Habitat and biodiversity	13
Pollution	15.7
Renewability	17
Resource use efficiency	15
Material score	87.7

References

Whittaker CL, Mortimer ND, Matthews RW. (2010) Understanding the Carbon Footprint of Timber Transport in the United Kingdom. Sheffield, UK: North Energy Associates LTD. <u>https://www.researchgate.net/publication/312448400 Understanding the carbon footprint of tim ber_transport in the United Kingdom</u>

IFC (2007). Environmental, Health, and Safety Guidelines for Sawmilling and Manufactured Wood Products. International Finance Corporation, World Bank Group

Material 2: Coir pith produced by Company 1

This is manufactured from a virgin material (by-product) (per Table 1); therefore, the starting point for this material is the plantation/small holding. However, as per Table 4, for some criteria (energy use and water use) generic data should be used at the plantation/small holding and for transport to the fibre mill (unless site specific data is available) and for other criteria (compliance, pollution, and resource use efficiency) the starting point for assessment is the fibre mill. The end point is the start of the mixing system (Table 1).

The material is produced from the outer husk of the coconut; per Table 3 it is responsible for 5% of the impact at the plantation/small holding, 50% of the impact at the fibre mill and 100% of the impact from the pith factory up to the mixing system.

1 ton of coconuts produce 1.9m³ of coir pith (Table 9). 4m³ of coconut husks produces 1m³ of coir pith (Table 8).

Supply chain map for Company 1 coir pith

The small holdings and plantations that supply the Fibre Mills in the Tamil Nadu region of India are multiple (more than shown in the supply chain map).

Husk Traders acts as intermediaries between the coconut growers and the fibre mills, collecting and transporting the husks.

Defra project SP1214 found that generally coir pith is collected from fibre mills within a 20km radius of the pith processing unit due to the rising cost of fossil fuels in India. It is assumed here that 20km is also the maximum economic distance for collection of coconut

husks from the small holding or plantation. An average distance of 10km is used in each case.

The pith factory is 160km from the port of Tuticorin, which is 13,905 km from Felixstowe (Table 7). Company 1 is located 100 km from Felixstowe. The coir pith is shipped in compressed blocks and reconstituted by Company 1.

40% of the coir pith purchased by Coir Pith Factory 1 comes from Fibre Mill 1 and the remaining 60% from Fibre Mill 2.

As per Table 4, generic data should be used for the operations in the small holding / plantation and for transport of material to the fibre mill.

According to SP1214 the main use of fossil fuels on coconut plantations is for pumps to extract water from boreholes and wells. The amount of energy used has not been calculated, but as coir pith is responsible for 5% of the impact at the plantation (Table 3) this fossil fuel energy use is assumed to be negligible per m³.

The Husk Trader transports coconut husks by road an average of 10km to the fibre mill (20km for the round trip as the return journey for empty vehicles is in scope). A typical load is $16m^3$. The truck (medium commercial vehicle) uses diesel and travels 4.3 km per litre of fuel (Table 8). 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). Coir pith is responsible for 50% of the energy use from transport of the coconut husk (Table 3). $4m^3$ of coconut husks produces $1m^3$ of coir pith (Table 8). Therefore, the fossil fuel energy use for transport of the coconut husks to the fibre mill that the pith is responsible for is a maximum of (((20/4.3)*10.55)/16)*0.5*4 = 6.13 kWh/m³.

Fibre Mill 1 uses 3.35 kWh of electricity per m³ of husk in crushing the husks and fibre extraction. Coir pith is responsible for 50% of the energy use at the fibre mill and $4m^3$ of coconut husks produces $1m^3$ of coir pith (Table 8), therefore coir pith is responsible for 3.35*0.5*4 = 6.7 kWh/m³ (Mill 1).

Fibre Mill 2 uses 3.40 kWh of electricity per m³ of husk in crushing the husks and fibre extraction. Coir pith is responsible for 50% of the energy use at the fibre mill and $4m^3$ of coconut husks produces $1m^3$ of coir pith (Table 8), therefore coir pith is responsible for 3.40*0.5*4 = 6.8 kWh/m³ (Mill 2).

40% of the coir pith purchased by Coir Pith Factory 1 comes from Fibre Mill 1, the remaining 60% comes from Fibre Mill 2. Therefore, the average energy use at the fibre mill is 6.7*0.4 + 6.8*0.6 = 6.76 kWh/m³.

The coir pith is transported by road a maximum of 10km to the factory (from both mills) (the return journey for empty vehicles is out of scope – third party haulage). A typical load is $16m^3$. The truck (medium commercial vehicle) uses diesel and travels 4.3 km per litre of fuel (Table 8). 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). Coir pith is responsible for 100% of the energy use from transport of the coconut pith (Table 3). Therefore, the fossil fuel energy use for transport of the coir pith to the factory that the pith is responsible for is ((10/4.3)*10.55)/16 = 1.53 kWh/m³.

Pith Factory 1 uses 3.1 kWh of electricity per m^3 for transporting the material around the factory, sieving and grading and compression into blocks of which 10% is supplied by wind power. Therefore, the fossil fuel energy used is 3.1*0.9 = 2.79 kWh/m³.

The compressed coir pith blocks are transported 160km by road to the port of Tuticorin (the return journey for empty vehicles is out of scope – third party haulage). A typical load is $300m^3$ (reconstituted volume). The articulated lorry (>33 tonnes) uses 3.57 kWh of diesel per kilometre (Table 6, average weight laden). Coir pith is responsible for 100% of the energy use from transport of the coconut pith (Table 3). Therefore, the fossil fuel energy use for transport of the coir pith to the port that the pith is responsible for is $(160*3.57)/300 = 1.90 \text{ kWh/m}^3$.

The compressed coir blocks are transported by sea to Felixstowe, a distance of 13,905 km (the return journey is out of scope – not by road). The volume of the typical load is $300m^3$ (reconstituted volume) and is shipped in a 40-foot container (2 TEU). The 9,300 TEU ship uses 250 tonnes of bunker fuel per day travelling at 24 knots (44.4 km/hour). 1 tonne bunker fuel oil is 12089.28 kWh (Table 5, litres per ton * kWh per litre for fuel oil). Therefore, the fossil fuel energy use for transport of the coir pith by sea is (((((13905/44.4)/24)*250)*12089.28)*(2/9300))/300 = 28.27 kWh/m³.

The compressed coir pith blocks are transported 100km by road from Felixstowe to Company 1 (the return journey for empty vehicles is out of scope – third party haulage). A typical load is $300m^3$ (reconstituted volume). The articulated lorry (>33 tonnes) uses 3.57 kWh of diesel per kilometre (Table 6, average weight laden). Therefore, the fossil fuel energy use for transport of the coir pith from the port to the factory that the pith is responsible for is (100*3.57)/300 = 1.19 kWh/m³.

Company 1 uses X litres of diesel per m³ of final product. 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). = $X^*10.55 = AA kWh/m^3$.

Therefore, the total non-renewable energy used from plantation to the mixing system is 0+6.13+6.76+1.53+2.79+1.90+28.27+1.19+AA kWh/m3 = 48.57+AA kWh/m³. If AA < 51.43 kWh/m³ the material scores 8 (Figure 5).

Water use (in extraction and production)

As per Table 4, generic data should be used for the operations in the small holding/plantation.

According to Mekonnen and Hoekstra (2010) the global average water footprint (blue and green water) for coconuts (1996-2005) was 2669 m³ of water per ton (Table 9), with a regional

assessment for Tamil Nadu of 2449 m³/ton (Table 10). At a conversion rate of 1 m³ = 1000L this is 2,449,000 L/ton. Both the global average and Tamil Nadu assessment assume all of this water is supplied by rainwater. However, SP1214 noted the requirement for irrigation of the coconut palm, particularly in the water stressed areas of Tamil Nadu. An estimated 25% of coconut plantations are irrigated in Tamil Nadu, therefore it is assumed that one in four of the plantations supplying the Fibre Mills (both 1 and 2) are irrigated. It is assumed that on irrigated plantations only half of the water is supplied by irrigation (the remainder by direct rainfall); 60% of the irrigation water comes from rainwater storage lagoons, 10% of the irrigation water comes from the pith factory (recycling) and the remainder from a private borehole. Therefore, 30% of the water use at the small holding/plantation (Table 3). 1 ton of coconuts produce 1.9m³ of coir pith (Table 9). Therefore, the potable water use at the small holding/plantation that the pith is responsible for is ((((2449000*0.5)*0.3)*0.05)/4)/1.9 = 2416.78 L/m³.

Fibre Mill 1 uses S L of water per m³ of husk for wetting crushed husks for 2 days before placing in the decorticator (i.e., mechanical system with no retting). Coir pith is responsible for 50% of the water use at the fibre mill and $4m^3$ of coconut husks produces $1m^3$ of coir pith (Table 8), therefore coir pith is responsible for S*0.5*4 = SS L/m³ (Mill 1).

Fibre Mill 2 uses T L of water per m³ of husk for wetting crushed husks for 5 days before placing in the decorticator (i.e., mechanical system with no retting). Coir pith is responsible for 50% of the water use at the fibre mill and $4m^3$ of coconut husks produces $1m^3$ of coir pith (Table 8), therefore coir pith is responsible for T*0.5*4 = TT L/m³ (Mill 2).

40% of the coir pith purchased by Coir Pith Factory 1 comes from Fibre Mill 1, the remaining 60% comes from Fibre Mill 2. Therefore, the average water use at the fibre mill is $SS*0.4 + TT*0.6 = AA L/m^3$.

Pith Factory 1 uses 300 L/m³ to wash (and buffer) coir pith in a controlled (tanked) environment. The wastewater is treated and used to irrigate coconuts (this recycling is already taken into account above).

Company 1 uses BB L/m³ of potable water to reconstitute compressed coir blocks. The remainder of the water used is rainwater.

Therefore, the total potable water used from plantation to mixing system is $2416.78+AA+300+BB L/m^3 = 2716.78+AA+BB L/m^3$. Assuming that (AA+BB) < 12083.22 L/m³ the material scores 5 (Figure 7) (if (AA+BB) < 583.22 L/m³ the material score would be 6).

August 2024

Social compliance

The social compliance assessment for coir pith begins at the fibre mill (Table 4). Company 1 has completed a selfassessment questionnaire to demonstrate social compliance, as has Coir Fibre Mill 2. As per Table 11. this is valued at 0.5 of an audited third-party assessment. Coir Pith Factory 1 has undergone a SMETA audit. Coir Fibre Mill 1 has not undertaken any form of

assessment and has no proof of its social compliance.

The level of proof of social compliance, as calculated using the social compliance calculator is 61% and the material scores 13 (Figure 9).

Compliance Ingredient Rate	r												
									Percentage				
Growing media material type	Number of tiers / steps in supply chain	Primary level	Second level	Third level	Fourth level	Fifth level	Overall Mater	ial Score	61.00				
Coir	3	1	1	2									
Percentage of material obtain	ed from each supplier	by level					SAQ or Audit						
		Primary level	Second level	Third level	Fourth level	Fifth level			Primary level	Second level	Third level	Fourth level	Fifth I
Supplier	1	100	100	40			Supplier	1	SAQ	Audit	None		
	2			60				2			SAQ		
_	3							3	_				
-	4							4	_				
-	5	-						5	-				
-	6	-					_	6	-				
-	8	4						8	-				
-	9	1					_	9	-				
-	10	1					_	10	-				
-	11	1						11	-				
	12	1						12					
	13	1						13					
	14							14					
_	15							15	_				
-	16							16	_				
-	17	-						17	_				
-	18	-					_	18	-				
-	19 20	•					-	19 20					
									_				

The small holdings and plantations that supply the Fibre Mills in the Tamil Nadu region of India are multiple and due to the use of Husk Traders it is not possible to track all of them back to the exact growing location, therefore a regional approach is taken. The region has not been subject to expansion of coconut growing into non-agricultural land in the last 10 years; therefore, the habitat and biodiversity score for this material is 12 (Figure 14).

Pollution

The pollution assessment for coir pith begins at the fibre mill (Table 4). Newleaf (2012) identifies the potential pollution hotspots at the fibre mill as run-off from hard standings and dust and at the pith factory as wastewater from washing and buffering and dust.

The wastewater from Coir Fibre Mill 1 and 2 and Coir Pith Factory 1 are monitored by the Tamil Nadu Pollution Control Board. Coir

Fibre Mills 1 and 2 have had no enforcement actions brought against them in the last 12 months. Coir Pith Factory 1 had a significant pollution event 6 months ago and the TNPCB took action against them. The issue has now been resolved and this is the only enforcement action in the last 12 months. Therefore, Coir Pith Factory 1 has a score of 5 (Figure 19).

The wastewater discharges by Company 1 are monitored by the Environment Agency. They have brought no enforcement actions against Company 1.

As the Fibre Mills and Company 1 have no enforcement actions against them, as per Figure 19 the pollution questionnaire should be used to determine the score.

Fibre Mill 1 and Company 1 have completed a pollution questionnaire. Fibre Mill 2 has not completed a questionnaire, so it must be assumed that the answers to all of the questions are no, resulting in a score of 6. The pollution score for Fibre Mill 1 is 10, and for Company 1 is 18.

August 2024

Towards Responsible Sourcing and Manufacture of Growing Media Pollution questionnaire

Julion	questionnaire			
	Company	Fibre Mill 1		
			Answer	
	Storage of materials		Yes/No	Change Scor
	Are you storing materials on site	Do you have a bund around your storage site for diesel and other liquids?	Yes	-2
	appropriately?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	No	
		Are your bulk raw materials stored appropriately to limit runoff?	No	
	Waste			
	Are you collecting, appropriately storing and	Plastics (stored under cover or collated for collection)	No	-2
	disposing of waste?	Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)		
		Waste created in the processing of materials (stored in a designated area with appropriate controls)	No	
	Air pollution			
	Are you mitigating the risk of air pollution from your bulk raw materials?	Have you conducted a risk assessment of air pollution impact?	Yes	2
		Is your air pollution impact high, medium or low?	Low	
		Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)		
		Change from base score of 12 (zero enforcement actions)		-2
		Score		10

Towards Responsible Sourcing and Manufacture of Growing Media Pollution questionnaire

Company	Company 1		
		Answer	
Storage of materials		Yes/No	Change Score
Are you storing materials on site	Do you have a bund around your storage site for diesel and other liquids?	Yes	2
appropriately?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	Yes	
	Are your bulk raw materials stored appropriately to limit runoff?	Yes	
Waste			
Are you collecting, appropriately storing and	Plastics (stored under cover or collated for collection)	Yes	2
disposing of waste?	Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)	Yes	
	Waste created in the processing of materials (stored in a designated area with appropriate controls)	Yes	
Air pollution			
Are you mitigating the risk of air pollution from your bulk raw materials?	Have you conducted a risk assessment of air pollution impact?	Yes	2
	Is your air pollution impact high, medium or low?	Medium	
	Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)	Yes	
	Change from base score of 12 (zero enforcement actions)		6
	Score		18

The pollution ingredient rater has been used to generate an overall score (using the weighting in Table 13). 40% of the coir pith purchased by Coir Pith Factory 1 comes from Fibre Mill 1 and the remaining 60% from Fibre Mill 2. The overall pollution score is 12.02.

Renewability

The material is produced annually at each site (Table 14). Therefore, the material score is 20 (Figure 23).

Resource use efficiency

The resource use efficiency assessment for coir pith begins at the fibre mill (Table 4). Coir pith is a virgin byproduct (Table 1). No inscope waste is generated in its production. Therefore, the material score is 15 (Figure 24).

Summary: material score

The material score is:

Criteria	Score
Energy	8
Water	5
Social compliance	13
Habitat and biodiversity	12
Pollution	12.02
Renewability	20
Resource use efficiency	15
Material score	85.02

References

ICRA Management Consulting Services Limited (IMaCS)(2013): Market Survey leading to Fuel Consumption norms for Diesel (Engine Driven) Trucks & Buses in India. Final Report for the Petroleum Conservation Research Association

Newleaf (2012): Coir: a sustainability assessment. Final report for Defra project SP1214. http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Proje ctID=18114&FromSearch=Y&Publisher=1&SearchText=sp1214&SortString=ProjectCode& SortOrder=Asc&Paging=10#Description

Mekonnen, M.M. and Hoekstra, A.Y. (2010) The green, blue and grey water footprint of crops and derived crop products, Value of Water Research Report Series No. 47, UNESCO-IHE, Delft, the Netherlands.

https://research.utwente.nl/en/publications/the-green-blue-and-grey-water-footprint-of-crops-and-derived-crop-3

Material 3: Green compost produced by Company 1

This is a recycled material (per Table 1) which is PAS100 certified but is produced to the WRAP Guidelines for the Specification of Quality Compost for use in Growing Media; therefore, the starting point for this material is the transfer station or composting site for material not arriving from a transfer station (Table 1). The end point is the start of the mixing system (Table 1).

1 tonne of green waste produces 1m³ of green compost. 2m³ of green waste produces 1m³ of green compost (physical contaminants make up 10% of the input material (annual average for Company 1) and 40% loss of volume on composting).

Supply chain map for Company 1 green compost

The composting operation (windrow) at Company 1 is supplied by two transfer stations (1, which is 10 km away and 2, 30 km) and by direct deliveries.

50% of the material (on an annual basis) comes from direct delivery and 25% of the material comes from each of transfer stations.

Physical contaminants are screened out of the compost and transported to a

landfill site 10 km away.

The green waste is transported 25km by road (default value (WRAP (2021) Carbon Waste and Resources Metric - <u>Technical report templates</u> (wrap.org.uk)) to either the Transfer Stations or direct to Company 1, with an average load of 10 tonnes. 1 tonne of green waste produces 1m³ of green compost, then a 10 tonne load would produce 10 m³ green

compost. The refuse collection vehicle (or rigid lorry (>17 tonnes)) uses 3.83 kWh of diesel per kilometre (Table 6, average weight laden). Therefore, the fossil fuel energy for municipal collection is = (25*3.83)/10 = 9.58 kWh/m³.

Fuel use at the Transfer Station is from loading lorries for transport. The loader uses 18 litres of diesel per hour, and it takes 10 minutes to load each lorry, so 3 L/load. An average load is $30m^3$ (after shredding). 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). $2m^3$ of green waste produces $1m^3$ of green compost. 50% of the material used by Company 1 comes from a transfer station. Therefore, the fossil fuel energy use at the Transfer Station that the green compost is responsible for is = (3/30)*10.55*2*0.5 = 1.06 kWh/m³.

The green waste is transported 10km by road from Transfer Station 1 to Company 1 (20 km for the round trip as the return journey for empty vehicles is in scope). An average load is $30m^3$ (after shredding). The articulated lorry (>33 tonnes) uses 3.57 kWh of diesel per kilometre (Table 6, average weight laden). $2m^3$ of green waste produces $1m^3$ of green compost. Therefore, the fossil fuel energy use for transport of the green waste to Company 1 is ((20*3.57)/30)*2 = 4.76 kWh/m³ (Transfer Station 1).

The green waste is transported 30km by road from Transfer Station 2 to Company 1 (60 km for the round trip as the return journey for empty vehicles is in scope). An average load is $30m^3$ (after shredding). The articulated lorry (>33 tonnes) uses 3.57 kWh of diesel per kilometre (Table 6, average weight laden). $2m^3$ of green waste produces $1m^3$ of green compost. Therefore, the fossil fuel energy use for transport of the green waste to Company 1 is ((60*3.57)/30)*2 = 14.28 kWh/m³ (Transfer Station 2).

25% of the green waste used by Company 1 comes from Transfer Station 1, 25% from Transfer Station 2 and the remaining 50% comes from direct deliveries (which are out of scope). Therefore, the average energy for transport of material to Company 1 is $4.76*0.25 + 14.28*0.25 = 4.76 \text{ kWh/m}^3$.

Company 1 uses diesel fuelled machinery to transport materials around the site (P L/m³), to shred the green waste (80 L/h shredding 120 tonnes/h, mean bulk density of food and garden waste is 338kg/m³ (WRAP, 2009) = 80/(120/0.338) = 0.23 L/m³), to turn the windrows (80 L/h turning 4400m³/h done once a week for 16 weeks = 80/4400*16 = 0.29 L/m³) and to run the screening machines (8 L/h screening 120m³/h = 8/120 = 0.07 L/m³) (all other uses are out of scope – beyond mixing system). 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). Therefore, the fossil fuel use by Company 1 is (P+0.23+0.29+0.07)*10.55 = 6.22 + (P*10.55) = AA kWh/m³.

Physical contaminants are screened out of the compost and transported to a landfill site 10 km away (the return journey for empty vehicles is out of scope – third party haulage). Physical contaminants make up 10% of the input material (annual average for Company 1). $2m^3$ of green waste produces $1m^3$ of green compost. An average load is $30m^3$. The articulated lorry (>33 tonnes) uses 3.57 kWh of diesel per kilometre (Table 6, average weight laden). Therefore, the fossil fuel use for transport of waste to landfill is $((10*3.57)/30)*0.1*2 = 0.24 \text{ kWh/m}^3$.

Therefore, the total non-renewable energy used from transfer station to mixing system is $9.58+1.06+4.76+AA+0.24 \text{ kWh/m}^3 = 15.64+AA \text{ kWh/m}^3$. As AA>6.22 (= 6.22 + (P*10.55)) giving at least 21.86 kWh/m³, the material score is 12 if P*10.55 is <4.14, otherwise the score is 10 (unless P*10.55 is >24.14) (Figure 5).

Water use (in extraction and production)

There is no water use attributable to green compost at the transfer station.

Company 1 uses <1 L of water per m³ of green compost (for wetting down the windrow when it becomes too dry).

Therefore, the total potable water use is $<1 \text{ L/m}^3$ and the

material scores 20 (Figure 7).

Social compliance

Company 1 has completed a self-assessment questionnaire to demonstrate social compliance. As per Table 11, this is valued at 0.5 of an audited third-party assessment. Neither Transfer Station (1 and 2) has undertaken any form of assessment. They have no proof of their social compliance.

The level of proof of social compliance, as calculated using the social compliance calculator is 30% and the

material scores 5 (Figure 9).

Habitat and biodiversity

The material is a recycled material, therefore, the habitat and biodiversity score for this material is 20.

Pollution

The B.C. Ministry of Agriculture (1996) identified the potential pollution hotspots from composting as leachate, odour, ammonia, nitrous oxide and other NO_x gases and methane. Of these, nitrous oxide and methane are out of scope as they are greenhouse gases.

The Environment Agency monitors emissions to air and water from the Transfer Stations (1 and 2) and Company 1. They have brought no

enforcement actions against any of the companies. Therefore, as per Figure 19 the pollution questionnaire should be used to determine the score.

Both transfer stations and Company 1 have completed a pollution questionnaire. The pollution score for Transfer station 1 is 15, Transfer station 2 is 18 and for Company 1 is 18.

n guestionnaire			
Company	Transfer Station 1		
		Answer	
Storage of materials		Yes/No	Change Scor
Are you storing materials on site	Do you have a bund around your storage site for diesel and other liquids?	Yes	2
appropriately?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	Yes	7
	Are your bulk raw materials stored appropriately to limit runoff?	Yes	
Waste			
Are you collecting, appropriately storing and	Plastics (stored under cover or collated for collection)		-1
disposing of waste?	Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)		
	Waste created in the processing of materials (stored in a designated area with appropriate controls)	Yes	
Air pollution			
Are you mitigating the risk of air pollution from your bulk raw materials?	Have you conducted a risk assessment of air pollution impact?	Yes	2
	Is your air pollution impact high, medium or low?		
	Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)	Yes	
	Change from base space of 40 (race anforcement actions)		3
	Change from base score of 12 (zero enforcement actions) Score		15

Towards Responsible Sourcing and Manufacture of Growing Media Pollution questionnaire

Company	Transfer Station 2		
		Answer	
Storage of materials		Yes/No	Change Score
Are you storing materials on site	Do you have a bund around your storage site for diesel and other liquids?	Yes	2
appropriately?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	Yes	
	Are your bulk raw materials stored appropriately to limit runoff?	Yes	
Waste			
Are you collecting, appropriately storing and	Plastics (stored under cover or collated for collection)	Yes	2
disposing of waste?	Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)	Yes	
	Waste created in the processing of materials (stored in a designated area with appropriate controls)	Yes	
Air pollution			
Are you mitigating the risk of air pollution from your bulk raw materials?	Have you conducted a risk assessment of air pollution impact?	Yes	2
	Is your air pollution impact high, medium or low?	Medium	
	Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)	Yes	
	Change from base score of 12 (zero enforcement actions)		6
	Score		18

Towards Responsible Sourcing and Manufactor	ure of Growing Media
Pollution questionnaire	

Company	Company 1		
		Answer	
Storage of materials		Yes/No	Change Score
Are you storing materials on site	Do you have a bund around your storage site for diesel and other liquids?	Yes	2
appropriately?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	Yes	
	Are your bulk raw materials stored appropriately to limit runoff?	Yes	
Waste			
Are you collecting, appropriately storing and	Plastics (stored under cover or collated for collection)	Yes	2
disposing of waste?	Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)	Yes	
	Waste created in the processing of materials (stored in a designated area with appropriate controls)	Yes	
Air pollution			
Are you mitigating the risk of air pollution from your bulk raw materials?	Have you conducted a risk assessment of air pollution impact?	Yes	2
	Is your air pollution impact high, medium or low?	Medium	
	Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)	Yes	
	Change from base score of 12 (zero enforcement actions)		6
	Score		18

The pollution ingredient rater has been used to generate an overall score (using the weighting in Table 13). 50% of the in-scope green compost purchased by Company 1 comes from Transfer Station 1 and the remaining 50% of the in-scope green compost comes from Transfer Station 2. The overall pollution score is 17.40.

Renewability

The material is manufactured from green waste which is renewable at a single site within 5 years (Table 14). Therefore, the material score is 20 (Figure 23).

Resource use efficiency

The material is not virgin (Table 1) and inscope waste is generated in production. No inscope waste is generated by the Transfer Stations (average of 0%), 10% of the starting volume from Company 1 is sent to landfill. Therefore, the total % of unrecycled materials is 10% and the material scores 6 (Figure 21).

Summary: material score

The material score is:

Criteria	Score
Energy	12
Water	20
Social compliance	5
Habitat and biodiversity	20
Pollution	17.40
Renewability	20
Resource use efficiency	6
Material score	100.4

References

Breitenbeck, G. A. and Schellinger, D. (2004). Calculating the Reduction in Material Mass and Volume during Composting, Compost Science & Utilization Vol. 12, Iss. 4. DOI:10.1080/1065657X.2004.10702206

B.C. Ministry of Agriculture (1996). Composting environmental concerns. Factsheet No. 382.500-11. British Columbia, Canada. https://www.calameo.com/read/0016403728bbedf389e97

WRAP (2009). Summary Report – Material Bulk Densities. Report prepared by Resource Futures

https://wrap.org.uk/resources/report/material-bulk-densities

Product 1: Multi-purpose compost produced by Company 1

Product 1, a multi-purpose compost produced by Company 1 (using only the previous worked examples) is 50% Material 1 (wood fibre), 30% Material 2 (coir pith) and 20% Material 3 (green compost).

Criteria	Material 1	Material 2	Material 3	Product 1	Product 1
	score	score	score	calculation	score
Energy	6	8	12		
Water	16	5	20		
Social	5	13	5		
compliance					
Habitat and	13	12	20		
biodiversity					
Pollution	15.7	12.02	17.4		
Renewability	17	20	20		
Resource	15	15	6		
use					
efficiency					
Material	87.7	85.02	100.4	87.7*0.5 +	89.44
score				85.02*0.3 +	
				100.4*0.2	

Responsibility Index – C.

Material 4: Bark produced by Company 2

This is manufactured from a virgin material (by-product) (Table 1); therefore, the starting point for this material is the forest. However, as per Table 4, for some criteria (energy use and water use) generic data should be used at the forest and for transport to the sawmill (unless site specific data is available) and for other criteria (social compliance, pollution and resource use efficiency) the starting point for assessment is the sawmill. The end point is the start of the mixing system (Table 1).

The material is bark; therefore, per Table 2 it is responsible for 7% of the impact at the forest, 7% of the impact at the sawmill and 100% of the impact after the sawmill up to the mixing system.

The UK forests that supply the sawmills are multiple and change with time.

The average timber haulage distance is 82 km (Table 8) from forest to sawmill.

Company 2 is supplied by 6 sawmills. Sawmill 1 is 1 km away, 2 is 16 km, 3 is 40 km, 4 is 1 km, 5 is 40 km and 6 is 80 km from one of the two bark processing sites. The company's two processing sites are 40 and 100 km away from its manufacturing site. Sawmills 1-3 supply processing site 1 and 4-6 supply site 2.

75% of the bark purchased by Company 2 comes from Sawmills 1-3 (25% each), 10% each comes from Sawmills 4 and 5 and Sawmill 6 supplies 5%.

August 2024

Energy use (in extraction, transport and production)

As per Table 4, generic data should be used for the operations in the forest and for transport of material to the sawmill.

As per Table 8, UK forests use 6.8 kWh per m³ of wood for site preparation and establishment (excluding building and maintaining forest roads – construction of infrastructure is out of scope). Diesel fuel consumption for felling is estimated at 1.2 litres per m³ of biomass and for forwarding at 0.9 litres per m³ of biomass (Table 8). 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5).

Bark is responsible for 7% of the impact at the forest (Table 2). Therefore, the energy use at the forest that the bark is responsible for is (6.8 + (1.2*10.55) + (0.9*10.55))*0.07 = 2.03 kWh/m³.

The average timber haulage distance is 82 km (164 km for the round trip as the return journey for empty vehicles is in scope) (Table 8). 20% of the journey is on forest roads (Table 8). Fuel use (diesel) is 0.459 l/km for forest roads and 0.342 l/km for public roads (Table 8). 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). The load capacity of road timber transport is limited by weight rather than volume, due to the weight of fresh roundwood (>400 kg/m³) (Whittaker et al, 2010). Therefore, a 40-tonne vehicle with a load capacity of 25.5 tonnes can carry a maximum of 63.75m³ in a load. It is assumed that the vehicle is not overloaded and that a typical load is 50m³. Bark is responsible for 7% of the impact of transport from the forest to the sawmill (Table 2).

 $= ((((164*0.2*0.459) + (164*0.8*0.342))*10.55)/50)*0.07 = 0.89 \text{ kWh/m}^3.$

Sawmill 1 uses 1.6 kWh per m³ of roundwood to run the debarker; bark is responsible for 7% of this energy use (Table 2). Sawmill 1 uses 11.5 kWh per m³ of bark to transport the bark around the site and to load the lorry. Therefore, fossil fuel energy use at Sawmill 1 is $(1.6*0.07)+11.5 = 11.61 \text{ kWh/m}^3$.

Sawmill 2 uses 2 kWh per m³ of roundwood to run the debarker; bark is responsible for 7% of this energy use (Table 2). Sawmill 2 uses 10 kWh per m³ of bark to transport the bark around the site and to load the lorry. Therefore, fossil fuel energy use at Sawmill 2 is $(2*0.07)+10 = 10.14 \text{ kWh/m}^3$.

Sawmill	Energy use (bark) (kWh/m ³)	% of Company 2 volume	Weighted energy by volume (kWh/m ³)
1	11.61	25	11.61*0.25 = 2.90
2	10.14	25	10.14*0.25 = 2.54

August 2024

Sawmill	Energy use (bark)	% of Company 2	Weighted energy by
	(kWh/m ³)	volume	volume (kWh/m ³)
3	12.05	25	12.05*0.25 = 3.01
4	11.82	10	11.82*0.10 = 1.18
5	15.79	10	15.79*0.10 = 1.58
6	11.13	5	11.13*0.05 = 0.56
Average annual energy use			11.77

Bark is transported 1km by road from Sawmill 1 to the Company 2 Bark Processing Site 1 (the return journey for empty vehicles is out of scope – third party haulage). A typical load is $75m^3$. The articulated lorry (> 33 tonnes) uses 3.57 kWh of diesel per kilometre (Table 6, average weight laden). Therefore, the fossil fuel energy use for transport of the bark to the Company 2 processing site is (1*3.57)/75 = 0.06 kWh/m³ (Sawmill 1).

Sawmill	Energy use in transport to processing plant (kWh/m ³)	% of Company 2 volume	Weighted energy by volume (kWh/m ³)
1	(1*3.57)/75 = 0.05	25	0.05*0.25 = 0.01
2	(16*3.57)/75 = 0.76	25	0.76*0.25 = 0.19
3	(40*3.57)/75 = 1.90	25	1.90*0.25 = 0.48
4	(1*3.57)/75 = 0.05	10	0.05*0.10 = 0.005
5	(40*3.57)/75 = 1.90	10	1.90*0.10 = 0.19
6	(80*3.57)/75 = 3.81	5	3.81*0.05 = 0.19
Average annual energy use			1.06

Bark Processing Site 1 uses 0.9 kWh/m^3 to screen the bark and 11.5 kWh/m^3 to transport bark around the site and load the lorry. Therefore, fossil fuel use by Company 2 at site 1 is $0.9+11.5 = 12.4 \text{ kWh/m}^3$.

Site	Energy use in at processing plant (kWh/m3)	% of Company 2 volume	Weighted energy by volume (kWh/m3)
1	0.9+11.5 = 12.4	75	12.4*0.75 = 9.30
2	0.85+12.0 = 12.85	25	12.85*0.25 = 3.21
Average annual energy use			12.51

Bark is transported 40km by road from Bark Processing Site 1 to the Company 2 Manufacturing Site (the return journey for empty vehicles is out of scope – third party haulage). A typical load is 75m³. The articulated lorry (>33 tonnes) uses 3.57 kWh of diesel per kilometre (Table 6, average weight laden). Therefore, the fossil fuel energy use for transport of the bark to the Company 2 manufacturing plant is (40*3.57)/75 = 2.20 kWh/m³ (Site 1).

Site	Energy use in transport to	% of Company	Weighted energy by
	manufacturing plant (kWh/m ³)	2 volume	volume (kWh/m ³)
1	(40*3.57)/75 = 1.90	75	1.90*0.75 = 1.43
2	(100*3.57)/75 = 4.76	25	4.76*0.25 = 1.19
Average annual energy use			2.62

The non-renewable energy use at Company 2's manufacturing plant is 8.5 kWh/m³.

Therefore, the total non-renewable energy used from forest to the mixing system is $2.03 + 0.89 + 11.77 + 1.06 + 12.51 + 2.62 + 8.5 = 39.38 \text{ kWh/m}^3$ and the material scores 10 (Figure 5).

Water use (in extraction and production)

As per Table 4, generic data should be used for the operations in the forest.

As per Table 9 UK forests are un-irrigated so no potable or abstracted water is used. No water is used in harvesting the forest. The tree nursery is assumed to be irrigated and uses 3.39 L of water per m³ of wood (Table 9). Bark is responsible for 7% of the impact at the forest

(Table 2). Therefore, bark is responsible for is $3.39*0.07 = 0.24 \text{ L/m}^3$.

Use of water at the sawmill is negligible (Pers. Comm. Forestry Commission, 2015).

Use of water at the bark processing sites and manufacturing plant (for the bark) is negligible on a per m³ basis (used for occasional washing down of machinery).

Therefore, the total potable or abstracted water used from forest to the mixing system is 0.24 L/m^3 and the material scores 20 (Figure 7).

The social compliance assessment for wood-based materials begins at the sawmill (Table 4). Company 2 has completed a self-assessment questionnaire to demonstrate social compliance. As per Table 11, this is valued at 0.5 of an audited third-party assessment.

Sawmill 1 has undergone a BSCI audit (25% of volume supplied), Sawmills 2 and 5 have completed self-assessments (25% and 10% respectively of volume supplied) and the remainder have no proof of their social compliance (25%, 10% and 5% respectively of volume supplied).

The level of proof of social compliance, as calculated using the social compliance calculator is 47% and the material scores 9 (Figure 9).

Habitat and biodiversity

Bark is a wood-based material; therefore, the wood-based material tree applies. All of the wood sourced by Company 2 is from the UK and, therefore, comes from sustainably managed forests (or has a low risk of not coming from a sustainably managed forest - FSC Controlled Wood National Risk Assessment). Company 2 is Forest Stewardship Council Chain of Custody Certified; with a rolling average input of 70% FSC material. Bark is responsible for 7% of the impact at the forest (Table 2). Therefore, the habitat and biodiversity score for this material is 15 (Figure 13, column 2).

Pollution

The pollution assessment for wood-based materials begins at the sawmill (Table 4). The IFC (2007) identify potential pollution hotspots from sawmills as wood dust, volatile organic compounds and wastewater effluent generated from runoff from irrigated storage areas known as log yards.

The Environment Agency monitors emissions to air and water from each of the sawmills and Company 2 (including its bark processing sites). They have brought an enforcement action against one of the Sawmills (Sawmill 3), due to a serious water pollution incident. Suitable pollution controls and mitigation is now in place. All of the other Sawmills and Company 2 have no enforcement actions.

As the Sawmills except for Sawmill 3 and Company 2 have no enforcement actions against them, as per Figure 19 the pollution questionnaire should be used to determine the score.

All Sawmills except Sawmill 6 (and Sawmill 3 as above) and Company 2 have completed a pollution questionnaire. As Sawmill 6 has not completed a questionnaire it must be assumed that the answers to all of the questions are no, resulting in a score of 6.

Company 2 completed separate questionnaires for each of the three sites (manufacturing plant and two bark processing sites) and then combined them into a single questionnaire. All appropriate pollution controls were in place at the manufacturing plant and one of the bark processing sites. One issue was identified at the second bark processing site. Therefore, the combined questionnaire for Company 2 has a "no" against that question as for one of the sites the answer was "no".
August 2024

Towards Responsible Sourcing and Manufacture of Growing Media Pollution questionnaire

Company	Company 2		
		Answer	
Storage of materials		Yes/No	Change Score
Are you storing materials on site	Do you have a bund around your storage site for diesel and other liquids?	No	-1
appropriately?	Are your solid (dry) chemicals stored in a water tight and fireproof store?	Yes	
	Are your bulk raw materials stored appropriately to limit runoff?	Yes	
Waste			
Are you collecting, appropriately storing and	Plastics (stored under cover or collated for collection)	Yes	2
disposing of waste?	Engineering consumables waste (e.g. belts) (stored in a designated area with appropriate controls)	Yes	
	Waste created in the processing of materials (stored in a designated area with appropriate controls)		
Air pollution			
Are you mitigating the risk of air pollution from your bulk raw materials?	Have you conducted a risk assessment of air pollution impact?	Yes	2
	Is your air pollution impact high, medium or low?	Low	
	Do you have appropriate mitigation to limit airborne particles? (Not required for low risk)		
	Change from base score of 12 (zero enforcement actions)		3
	וטוומוועב ווטוו שמשב שנטוב טו וב נבבוט בוווטונבווופוו מנווטוג)		ů –

The pollution score for each company in the supply chain is:

Company	Pollution Score	% material supply	Level
Company 2	15	100	Primary
Sawmill 1	18	25	Second
Sawmill 2	18	25	
Sawmill 3	5	24	
Sawmill 4	12	10	
Sawmill 5	18	10	
Sawmill 6	6	5	

The pollution ingredient rater has been used to generate an overall score (using the weighting in Table 13). The overall pollution score is 14.42.

Renewability

The material is derived from softwood which is renewable at a single site within 50 years, but not within 5 years (Table 14). Therefore, the material score is 17 (Figure 23).

Resource use efficiency

The resource use efficiency assessment for wood-based materials begins at the sawmill (Table 4). The bark is a virgin byproduct (Table 1) and no in-scope waste is generated in production. Therefore, the material score is 15 (Figure 24).

Summary: material score

The material score is:

Criteria	Score
Energy	10
Water	20
Social compliance	9
Habitat and biodiversity	15
Pollution	14.42
Renewability	17
Resource use efficiency	15
Material score	100.42

References

Whittaker CL, Mortimer ND, Matthews RW. (2010) Understanding the Carbon Footprint of Timber Transport in the United Kingdom. Sheffield, UK: North Energy Associates LTD. <u>https://www.researchgate.net/publication/312448400 Understanding the carbon footprint of tim ber_transport in the United Kingdom</u>

IFC (2007). Environmental, Health, and Safety Guidelines for Sawmilling and Manufactured Wood Products. International Finance Corporation, World Bank Group

Material 5: Anaerobic digestate produced by Company 2

Company 2 is supplied with solid anaerobic digestate from a single AD facility. The feedstock used by the AD facility is 70% energy crops (a virgin material) and 30% poultry manure (a recycled material).

As per Table 1, anaerobic digestate should be treated as a virgin material or a recycled material depending on the source material. Where the digestate is a blend of sources the scores for the material should be the weighted average for the proportion of each source in the blend on an annual basis. The weighting should be applied after the individual score is generated for each source even though they are in a blend for parts of the production process. Therefore, individual scores are generated for each category of feedstock (based on anaerobic digestate being produced 100% from each feedstock) before a product score is derived.

Supply chain map for Company 2 digestate

Company 2 is supplied with anaerobic digestate from a single AD facility 20 km away. This facility is a farming operation (Farm 1) with an on-farm digestor (AD Facility 1). 75% of the energy crop feedstock (maize silage) is produced on-farm (Farm 1). The remaining 25% of the energy crop feedstock comes from two neighbouring farms (Farm 2 and Farm 3). Farm 2 is rented land that is 5 km away. The land is managed by Farm 1 and supplies 15% of the feedstock. Farm 3 is 10 km away and supplies 10% of the feedstock. All farm operations at Farm 3 are carried out by Farm 3, except for the maize harvest and

transport of the silage to Farm 1, which is carried out by Farm 1.

The poultry manure comes from a poultry farm (Farm 4) that is 16 km away and is supplied by specialist contractors.

Energy crop feedstock

This is a virgin material (by-product) (Table 1); therefore, the starting point for this material is the field. However, as per, for some criteria (energy use and water use) generic data should be used at the farm and for transport to the AD facility (unless site specific data is available) and for other criteria (social compliance, pollution and resource use efficiency) the starting point for assessment is the farm (social compliance only) or the AD facility. The end point is the start of the mixing system (Table 1).

The product is a solid digestate; therefore, per Table 3 it is responsible for 6% of the impact at the farm, 6% of the impact at the digestor, 67% of the impact at the separator and 100% of the impact after the separator up to the mixing system.

As per Table 8, it is assumed that there is 10% recoverable fibre by weight of input material and that 1 tonne of fibre has a volume of 2.7 m^3 .

Energy use (in extraction, transport and production)

As per Table 4, generic data should be used for the operations at the farm and for transport to the anaerobic digestion facility (unless real data is available).

As per Table 8, typical energy use for farm practices associated with energy crops are

available from a range of sources. One example is the AD tool produced by the Bioenergy and Organic Resources Research Group at the University of Southampton. This is used to generate generic data in this worked example.

Using the tool the average UK yield of maize silage is 45 t/ha and the total energy use in crop production (excluding fertiliser applications) is 82 l/ha (including average 1 km transport on-farm). 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 4). Anaerobic digestate (from energy crops) is responsible for 6% of the impact at the farm (Table 2). As per Table 8, it is assumed that there is 10% recoverable fibre by weight of input material and that 1 tonne of fibre has a volume of 2.7 m³. Therefore, the energy use at the farm that the anaerobic digestate (from energy crops) is responsible for $((82*10.55)/(45*0.1*2.7))*0.06 = 4.27 \text{ kWh/m}^3$.

There is no additional energy used in transport of maize silage from Farm 1 to the AD Facility 1 as this is covered by the average 1 km on-farm transport.

Maize silage is transported 5 km by road from Farm 2 to the AD Facility 1 (10 km for the round trip as the return journey for empty vehicles is in scope). An average load is 16 tonnes. The tractor and trailer uses 25 litres of diesel per hour. 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). It is assumed that 6 km of the return journey is made at the maximum speed limit for agricultural tractors and trailer of 40 kph and the rest of the journey is made at an average speed of 20 kph, therefore the 10 km round trip has a drive time of 21 minutes. As per Table 8, it is assumed that there is 10% recoverable fibre by weight of input material and that 1 tonne of fibre has a volume of 2.7 m³. Anaerobic digestate (from energy crops) is responsible for 6% of the impact of transport from the farm to the AD facility (Table 3). Therefore, the fossil fuel energy use for transport of the maize silage to AD Facility 1 is $((10^*((21/60)^*25)^*10.55)/(16^*0.1^*2.7))^*0.06 = 12.82 kWh/m³$ (Farm 2).

Maize silage is transported 10 km by road from Farm 3 to the AD Facility 1 (20 km for the round trip as the return journey for empty vehicles is in scope). It is assumed that 16 km of the return journey is made at the maximum speed limit for agricultural tractors and trailer of 40 kph and the rest of the journey is made at an average speed of 20 kph, therefore the 20 km round trip has a drive time of 36 minutes.

August 2024

Farm	Energy use in transport to AD Facility (kWh/m ³)	% of Company 2 volume (virgin material only)	Weighted energy by volume (kWh/m ³)
1	0 (fully covered in crop production)	75	0
2	((10*((21/60)*25)*10.55)/(16*0.1*2.7))*0.06 = 12.82	15	12.82*0.15 = 1.92
3	((20*((36/60)*25)*10.55)/(16*0.1*2.7))*0.06 = 43.96	10	43.96*0.10 = 4.40
	Average a	nnual energy use	6.32

As per Figure 5 only energy use from fossil fuels is in scope. AD Facility 1 is powered by the renewable energy produced by the facility itself, as is the separator and drying operations. However, AD Facility 1 uses diesel fuelled manitou, teleporter type machine to load the digestor. This consumes 3 litres of diesel per hour and is run for one hour per day. The volume of maize silage loaded per day is 200 tonnes. 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). As per Table 8, it is assumed that there is 10% recoverable fibre by weight of input material and that 1 tonne of fibre has a volume of 2.7 m³. Anaerobic digestate (from energy crops) is responsible for 6% of the impact at the AD facility (Table 3). Therefore, the fossil fuel use by AD Facility 1 is $((3*1*10.55)/(200*0.1*2.7))*0.06 = 0.04 \text{ kWh/m}^3$.

Solid anaerobic digestate is transported 20 km by road from AD Facility 1 to Company 2. (the return journey for empty vehicles is out of scope – third party haulage). An average load is 20 tonnes. The articulated lorry (>33 tonnes) uses 3.5 kWh of diesel per kilometre (Table 6, average weight laden). As per Table 8, it is assumed that 1 tonne of fibre has a volume of 2.7 m³. Anaerobic digestate (from energy crops) is responsible for 100% of the impact of transport from the AD facility to the manufacturing plant (Table 3). Therefore, the fossil fuel energy use for transport of the fibre to manufacturing plant is $(20*3.57)/(20*2.7) = 1.32 \text{ kWh/m}^3$.

Company 2 uses Q litres of diesel per m³ of final product. 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 4). = Q*10.55 = BB kWh/m³. It is assumed BB is <1 kWh/m³.

Therefore, the total non-renewable energy used from farm to the mixing system is $4.41+6.53+0.04+1.67+<1 \text{ kWh/m}^3 = 12.45\pm0.50 \text{ kWh/m}^3$. Therefore, the material scores 14 (Figure 5).

Water use (in extraction and production)

As per Table 4, generic data should be used for crop production.

As per Table 9 energy crops (including maize silage) used to supply AD facilities are typically un-irrigated in the UK, so no potable or abstracted water is used.

The AD Facility uses stored rainwater harvested from the site, so no potable or abstracted water is used.

No water is used by Company 2 to manufacture the final product.

Therefore, no (zero) potable or abstracted water is used from farm to mixing system and the material scores 20 (Figure 7).

August 2024

Social compliance

Company 2, the AD Facility and its own Farm (Farm 1, including the rented land at Farm 2 managed by Farm 1) have completed selfassessment questionnaires to demonstrate social compliance. As per Table 11, this is valued at 0.5 of an audited third-party assessment.

Farm 3 has not undertaken any form of assessment. They have no proof of their social compliance.

The level of proof of social compliance, as calculated using the social compliance calculator is 49% and the material scores 9 (Figure 9).

Habitat and biodiversity

All the land in Farms 1, 2 and 3 used to grow maize was not semi-natural habitat immediately before planting of these energy crops and have been in agricultural use for decades. Farms 2 and 3 are not in a higher-level environmental scheme or being managed to a similar standard. Farm 1 is signed up to a Countryside Stewardship agreement. Farm 4 is out of scope as it provides a recycled feedstock.

Therefore, Farms 2 and 3 score 6 and Farm 1 scores 18. As per Figure 16 a weighted average score needs to be generated for batches from multiple farms.

Farm	Habitat and biodiversity	% of Company 2 volume	Weighted habitat
	score	(virgin material only)	score by volume
1	18	75	18*0.75 = 13.5
2	6	15	6*0.15 = 0.9
3	6	10	6*0.10 = 0.6
	Average	15	

Pollution

As per Table 4, the starting point for anaerobic digestate (from energy crops) for pollution is the AD Facility.

The potential pollution hotspots at the AD Facility are water pollution from storage of feedstock or digestate, runoff from yard, odour, dust, ammonia and loss of biogas. As the biogas is methane it is out of scope because it is a greenhouse gas.

The potential pollution hotspots at the Growing Media Manufacturer (Company 2) is runoff from the yards.

The Environment Agency monitors emissions to air and water from the AD Facility and Company 2. They have brought no enforcement actions against any of the companies, therefore, as per Figure 19 the pollution questionnaire should be used to determine the score.

Company 2 completed separate questionnaires for each of its three sites (manufacturing plant and two bark processing sites) and then combined them into a single questionnaire. All appropriate pollution controls were in place at the manufacturing plant and one of the bark processing sites. One issue was identified at the second bark processing site. Therefore, the combined questionnaire for Company 2 for **bark** has a "no" against that question as for one of the sites the answer was "no". (see Material 4: Bark produced by Company 2).

However, as the bark processing sites are not involved in the production of the AD material, they do not count when calculating the AD pollution score.

The pollution score for each company in the supply chain is:

Company	Pollution Score	% material supply	Level
Company 2	18	100	Primary
AD Facility	18	100	Second

The pollution ingredient rater has been used to generate an overall score (using the weighting in Table 13). The overall pollution score is 18.

Renewability

Maize is renewable within 5 years at a single site (Table 14), therefore, the material score is 20 (Figure 23).

Resource use efficiency

As per Table 4 the starting point for resource use efficiency for anaerobic digestate (from energy crops) is the AD Facility.

As per Table 1 anaerobic digestate (from energy crops) is a virgin byproduct. A small volume of in-scope waste is generated in its production (non-biodegradable plastic sheeting used over silage stores) which is disposed of to landfill. The volume of unrecycled waste is less than 1% of the volume of the starting material. Therefore, the material score is 12 (Figure 24).

Waste material feedstock

The poultry manure is a recycled material (per Table 1), therefore the starting point for this material is the point at which transport is commercially viable (Table 1), which is the poultry farm. Removal of manure from the poultry houses is carried out by contractors who remove the material, load it on to lorries and have contracts to deliver the material to the AD Facility. The end point is the start of the mixing system (Table 1).

As per Table 8, it is assumed that there is 10% recoverable fibre by weight of input material and that 1 tonne of fibre has a volume of 2.7 m^3 .

Energy use (in extraction, transport and production)

In scope fuel use at Farm 4 is from loading lorries for transport. The telehandler uses 10 litres of diesel per hour, and it takes 1 hour to load each lorry, so 10 L/load. An average load is 28 tonnes. 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). As per Table 8, it is assumed that there is 10% recoverable fibre by weight of input material and that 1 tonne of

fibre has a volume of 2.7 m³. It is assumed that anaerobic digestate (from waste materials) has the same distribution of impacts as anaerobic digestate (from energy crops) and, therefore, is responsible for 6% of the impact before the AD facility from the point that transport is commercially viable (Table 3). Therefore, the in-scope fossil fuel energy use at Farm 4 that the anaerobic digestate is responsible for is = $((10*10.55)/(28*0.1*2.7))*0.06 = 0.84 \text{ kWh/m}^3$.

Poultry manure is transported 16 km by road from Farm 4 to the AD Facility 1 (the return journey for the empty vehicle is out of scope as it will not return to Farm 4 but go on to a different poultry farm). An average load is 28 tonnes. The articulated lorry (>33 tonnes) uses 3.57 kWh of diesel per kilometre (Table 6, average weight laden). As per Table 8, it is assumed that there is 10% recoverable fibre by weight of input material and that 1 tonne of fibre has a volume of 2.7 m³. Anaerobic digestate (from waste materials) is responsible for 6% of the impact of transport from Farm 4 to the AD facility (Table 3). Therefore, the fossil fuel energy use for transport of the poultry manure to AD Facility 1 is $((16*3.57)/(28*0.1*2.7))*0.06 = 0.45 \text{ kWh/m}^3$.

As per Figure 5 only energy use from fossil fuels is in scope. AD Facility 1 is powered by the renewable energy produced by the facility itself, as is the separator and drying operations However, AD Facility 1 uses diesel fuelled manitou, teleporter type machine to load the digestor. This consumes 3 litres of diesel per hour and is run for one hour per day. The volume of maize silage loaded per day is 200 tonnes. 1 litre of diesel (100% mineral) is equivalent to 10.55 kWh (Table 5). As per Table 8, it is assumed that there is 10% recoverable fibre by weight of input material and that 1 tonne of fibre has a volume of 2.7 m³. Anaerobic digestate (from waste materials) is responsible for 6% of the impact at the AD facility (Table 3). Therefore, the fossil fuel use by AD Facility 1 is $((3*1*10.55)/(200*0.1*2.7))*0.06 = 0.04 \text{ kWh/m}^3$.

Solid anaerobic digestate is transported 20 km by road from AD Facility 1 to Company 2. (the return journey for empty vehicles is out of scope – third party haulage). An average load is 20 tonnes. The articulated lorry (>33 tonnes) uses 3.57 kWh of diesel per kilometre (Table 6, average weight laden). As per Table 8, it is assumed that 1 tonne of fibre has a volume of 2.7 m³. Anaerobic digestate (from waste materials) is responsible for 100% of the impact of transport from the AD facility to the manufacturing plant (Table 3). Therefore, the fossil fuel energy use for transport of the fibre to manufacturing plant is $(20*3.57)/(20*2.7) = 1.32 \text{ kWh/m}^3$.

Company 2 uses Q litres of diesel per m³ of final product. 1 litre of diesel is equivalent to 10.55 kWh (Table 5). = $Q^{*10.55} = BB kWh/m^3$. It is assumed BB is <1 kWh/m³.

Therefore, the total non-renewable energy used from the start of commercially viable transport to the mixing system is $0.84+0.45+0.04+1.32+<1 \text{ kWh/m}^3 = 3.15\pm0.50 \text{ kWh/m}^3$. Therefore, the material scores 18 (unless BB > 0.95) (Figure 5).

Water use (in extraction and production)

There is no water use attributable to anaerobic digestate (from waste materials) at Farm 4.

The AD Facility uses stored rainwater harvested from the site, so no potable or abstracted water is used.

No water is used by Company 2 to manufacture the final product.

Therefore, no (zero) potable or abstracted water is used from farm to mixing system and the material scores 20 (Figure 7).

August 2024

Social compliance

Company 2 and AD Facility 1 have completed self-assessment questionnaires to demonstrate social compliance. As per Table 11: Relative value of different forms of proof of social compliance, this is valued at 0.5 of an audited thirdparty assessment. The Poultry Farm (Farm 4) has had a third-party audit.

The level of proof of social compliance, as calculated using the social compliance calculator is 60% and the material scores 11 (Figure 9).

Compliance Ingredient Rate	r												
									Percentage				
Growing media material type	Number of tiers / steps in supply chain	Primary leve	Second level	Third level	Fourth level	Fifth level	Overall Mater	ial Score	60.00				
AD from waste	3	1	1	1									
Percentage of material obtain	ed from each supplier	by level					SAQ or Audit						
		Primary leve	Second level	Third level	Fourth level	Fifth level			Primary level	Second level	Third level	Fourth level	Fifth le
Supplier	1	100	100	100			Supplier	1	SAQ	SAQ	Audit		
	2	_						2					
	3	1						3	_				
	4	_					_	4	_				
	5	-						5	4				
-	6	-					_	6	-				
-	8	-					-	8	-				
	9	-					-	9	-				
-	10	-						10	-				
	11						-	11					
	12							12					
	13							13					
	14							14					
	15	1						15					
	16	-						16					
	17	_					_	17	_				
-	18	-						18	-				
-	19 20						-	19 20					
]								
Value must not exceed 100%	Sum	100	100	100	0	0 0							

Habitat and biodiversity

The material is a recycled material, therefore, the habitat and biodiversity score for this material is 20.

Pollution

As per Table 4, the starting point for anaerobic digestate (from energy crops) for pollution is the AD Facility.

The potential pollution hotspots at the AD Facility are water pollution from storage of feedstock or digestate, runoff from yard, odour, dust, ammonia and loss of biogas. As the biogas is methane it is out of scope because it is a greenhouse gas.

The potential pollution hotspots at the Growing Media Manufacturer (Company 2) is runoff from the yards.

The Environment Agency monitors emissions to air and water from the AD Facility and Company 2. They have brought no enforcement actions against any of the companies, therefore, as per Figure 19 the pollution questionnaire should be used to determine the score.

Company 2 completed separate questionnaires for each of its three sites (manufacturing plant and two bark processing sites) and then combined them into a single questionnaire. All appropriate pollution controls were in place at the manufacturing plant and one of the bark processing sites. One issue was identified at the second bark processing site. Therefore, the combined questionnaire for Company 2 for **bark** has a "no" against that question as for one of the sites the answer was "no". (see Material 4: Bark produced by Company 2).

However, as the bark processing sites are not involved in the production of the AD material, they do not count when calculating the AD pollution score.

The pollution score for each company in the supply chain is:

Company	Pollution Score	% material supply	Level
Company 2	18	100	Primary
AD Facility	18	100	Second

The pollution ingredient rater has been used to generate an overall score (using the weighting in Table 13). The overall pollution score is 18.

Renewability

For recycled materials only the formation/growth of the original virgin material that is being recycled is in scope. The material is manufactured from poultry manure which results from the consumption of mainly plant material by poultry. This is renewable at a single site within 5 years (Table 13). Therefore, the material score is 20 (Figure 23).

Resource use efficiency

processing energy use here is 1.38 ± 0.50 kWh/m³. The score is dependent on whether this value is < or > 8.1 kWh/m³. As this value is < 8.1 kWh/m³ the material score is 20 (Figure 24).

As per Table 1 anaerobic digestate (from waste) is a recycled material (with a starting point when transport is commercially viable) and no in-scope waste is generated in its production.

Therefore, as per Figure 24 it is necessary to determine the processing energy used for the recovery of this material before a score can be assigned.

The calculations used for the energy criterion should be used here. Transport energy use is out of scope so should be excluded from the total. Therefore,

Anaerobic digestate weighted average product score

Company 2 is supplied with solid anaerobic digestate from a single AD facility. The feedstock used by the AD facility is 70% energy crops and 30% poultry manure. Therefore, the product score will be 70% of the score for the energy crop plus 30% of the score for the poultry manure.

Where criteria scores are decided based on quantified units (i.e., kWh/m³, l/m³, %) it makes more sense to create weighted averages of these quantified units to determine a new score rather than creating weighted averages of the scores themselves. This approach is taken for the energy use, water use and social compliance criteria.

Energy use

Material	kWh/m ³	% material	Weighted average
AD from energy crops	12.45±0.50	70	12.45±0.50*0.7 = 8.72±0.35
AD from waste	3.15±0.50	30	3.15±0.50*0.3 = 0.95±0.15
	Average annua	9.66±0.50	

Therefore, the material score is 14 (Figure 5). If the weighted average had been applied to the original scores rather the kWh/m³ the material would have scored 15.2.

Water use

Material	L/m ³	% material	Weighted average
AD from energy crops	0	70	0
AD from waste	0	30	0
	Average annu	0	

Therefore, the material score is 20 (Figure 7).

Social compliance

Material	% compliance	% material	Weighted average
AD from energy crops	49	70	49*0.7 = 34.3
AD from waste	60	30	60*0.3 = 18
	52.3		

Therefore, the material score is 11 (Figure 9). If the weighted average had been applied to the original scores rather the % compliance the material would have scored 9.6.

Habitat and biodiversity

Material	Score	% material	Weighted average
AD from energy crops	15	70	15*0.7 = 10.5
AD from waste	20	30	20*0.3 = 6
		Average score	16.5

Pollution

Material	Score	% material	Weighted average
AD from energy crops	18	70	18*0.7 = 12.6
AD from waste	18	30	18*0.3 = 5.4
		Average score	18

Renewability

Material	Score	% material	Weighted average
AD from energy crops	20	70	20*0.7 = 14
AD from waste	20	30	20*0.3 = 6
		Average score	20

Resource use efficiency

Material	Score	% material	Weighted average
AD from energy crops	12	70	12*0.7 = 8.4
AD from waste	20	30	20*0.3 = 6
		Average score	14.4

Summary: material score

The material score is:

Criteria	Score
Energy	14
Water	20
Social compliance	11
Habitat and biodiversity	16.5
Pollution	18
Renewability	20
Resource use efficiency	14.4
Material score	113.9

Annex 1: Glossary

Abstracted water	Water taken out of a watercourse or water body, other than where
	that water body was constructed by the user specifically for the
	collection of water for that use and the water collected is entirely
	rainwater or surface run-off during flood conditions.
Agricultural land	Land currently, or if unused last used, for the purposes agricultural or horticultural production.
Anaerobic digestate	The fibrous material remaining after the anaerobic digestion of a
(fibre)	biodegradable feedstock.
Anaerobic digestate	Anaerobic digestate which has been produced from energy crops
(from energy crops)	which have been specifically grown for the purpose of energy recovery.
Anaerobic digestate	Anaerobic digestate which has been produced from waste organic
(from waste materials)	materials.
Bark	The outer layer of a tree.
Biochar	The solid material obtained from the thermochemical conversion of biomass in an oxygen-limited environment.
Biochar (from forestry	Biochar which has been produced from forestry products (i.e., wood-
products)	based materials).
Biochar (from waste	Biochar which has been produced from waste organic materials.
materials)	
Biodiversity offsetting	This is an approach to compensate for habitats and species lost to
	development at one site, with the creation, enhancement or
	restoration of habitat at another.
Biomass	Biological material derived from living, or recently living organisms.
Blue water	Water in freshwater lakes, rivers and aquifers.
Bracken	A tall fern with coarse lobed fronds, which occurs worldwide and can
	cover large areas.
BSCI	Business Social Compliance Initiative
Bulk ingredients	Raw materials (>5% by volume) that make up a growing media substrate or soil improver. Specifically excluding additives such as lime and fertiliser used to alter the chemical characteristics of the
	substrate.
By-product/Co-product	A raw material that is a virgin product but is produced as part of a
	process to obtain or manufacture another, closely related, raw
	material. Obtaining or manufacturing the by-product/co-product
	alone would not normally be economically viable. A waste product
<u> </u>	would not meet the definition of a by-product/co-product.
Carbon cycling	Exchange of carbon between different elements of the carbon cycle.
<u> </u>	In this context between biomass, soil and the atmosphere.
Carbon sink	A natural or artificial reservoir that accumulates and stores some
	carbon-containing chemical compound for an indefinite period, e.g.,
O a in	a peat bog.
Coir	The fibre and pith of the coconut husk.
Coir fibre	The fibre of the coconut husk.
Coir pith	Corky substance found between the fibres of the coconut husk.
Conservation	A label that denotes that an area is being protected for conservation
designation	purposes. They may be statutory or non-statutory.
Cork	Cork is an impermeable buoyant material, the phellem layer of bark
	tissue that is harvested for commercial use primarily from Quercus
	suber (the cork oak), which is native to southwest Europe and
	northwest Africa.
Cork (recycled)	Used Cork that has been through a recovery process. This does not include post-industrial cork which is still part of the business model
	for virgin cork.

Decorticator	A machine that tears apart the husk of the coconut; separating fibre from pith.
Embedded water	Water that is an integral requirement of the growing/manufacturing
	process, but is not normally part of the final product, for example,
	water used in the washing of coir at the fibre mill.
Enforcement action	Legally authorised action undertaken by the relevant regulator within
Emoleciment action	that jurisdiction to require a breach of planning, environmental or
	other legal controls to be rectified.
Environmental impact	
Environmental impact	Environmental Impact Assessment (EIA) is a tool used to assess the
assessment (EIA)	significant effects of a project or development proposal on the
	environment.
	EIAs make sure that project decision makers think about the likely
	effects on the environment at the earliest possible time and aim to
	avoid, reduce or offset those effects. This ensures that proposals are
	understood properly before decisions are made.
Extraction	To remove a raw material from the ground. If extraction only occurs
	for part of the year consideration of the impact of extraction should
	not be limited to the period of active extraction but should also
	consider the extraction site during its inactive phase.
Fibre mill	A facility for separating the fibre from the coconut husk.
Finished product	Product ready for use for its intended purpose, i.e., no further
	manufacturing needs to take place. This could include growing
	media or soil improver ingredient(s) that are sold separately.
Forest	An area covered by trees and other woodland species.
Forest land	Land where the primary historic land use was forest, even where the
Forestianu	
The set free l	forest cover has been removed.
Fossil fuel	A carbon-based fuel source created by natural processes over long
0 (1)	periods of time.
Gaseous effluent	Emissions in the form of gas (as opposed to a liquid or solid) to the
	atmosphere from a raw material or process.
Green compost	The output of the 'composting' of waste organic matter, typically plant
	residues, derived from domestic, landscape and municipal sources.
	In the UK PAS100 is the minimum standard that must be met for the
	material to be 'recovered waste'.
Greenhouse gas (GHG)	A gas that contributes to climatic warming by changing the balance
	of absorption and emission of infrared radiation in the atmosphere.
Green water	The precipitation on land that does not run off or recharge the
	groundwater but is stored in the soil or temporarily stays on top of
	the soil or vegetation. Eventually, this part of precipitation evaporates
	or transpires through plants.
Grit	Particles of aggregate less than approximately 15 mm in size.
Handling machinery	Machinery used to process and transport material around a site.
Hardwood	Wood from deciduous trees and broad-leaf evergreen trees.
International	An area of habitat, species or biodiversity value formally recognised
conservation designation	as such by national governments under a scheme that operates to
	an agreed standard across national frontiers. Such recognition
	normally confers a high degree of protection to the designated
	interest.
In-scope waste	Waste that is in-scope of the assessment.
	Including:
	 Unwanted material from production disposed of to landfill
	 Physical contaminants screened out of input materials
	Excluding:
	 Material which is used to produce a by-product

	 Packaging materials used to transport materials between companies in the supply chain
ISO9001	The ISO 9000 family of quality management systems standards is designed to help organizations ensure that they meet the needs of customers and other stakeholders while meeting statutory and regulatory requirements related to a product. ISO 9000 deals with the fundamentals of quality management systems, including the eight management principles upon which the family of standards is based. ISO 9001 deals with the requirements that organizations wishing to meet the standard must fulfil.
ISO14001	An internationally accepted standard that provides an outline for effective environmental management systems within businesses.
Legally binding mitigation agreement	An agreement with the relevant regulator within that jurisdiction that the regulator can require to be implemented, by recourse to legal action if necessary, to reduce, prevent or compensate for an adverse impact by carrying out specified works or measures.
Liquid effluent	Emissions from a raw material or process in the form of liquid (as opposed to a gas or solid).
Loam	Soil composed primarily of sand, silt and clay. In the context of growing media manufacture the terms 'loam' and 'soil' are largely interchangeable.
Minerals	An inorganic natural substance, but for the purposes of both legislation in the UK and this scheme taken to include any raw material extracted from the ground other than topsoil. However, for the purposes of the habitat and biodiversity criterion peat is treated separately from other minerals.
Mixing system (mixing belt)	That part of the growing media or soil improver manufacturing process where bulk substrates are combined and additives introduced to the mix. The 'mixing belt' is the first part of that process where only bulk substrates are combined. At the 'mixing belt' all raw materials must be in a ready to manufacture form – for example, coir pith must be re-wet, bark fines must be screened etc. – even if further screening is carried out as part of the manufacturing process.
Monocrop	Monocropping is the agricultural practice of growing a single crop year after year on the same land, in the absence of rotation through other crops or growing multiple crops on the same land (polyculture).
Monocrop plantation	A plantation (see below), or part of a plantation, where cultivation is limited exclusively to a single crop.
Mushroom substrate	Growing media used in production of mushrooms.
National conservation designation	An area of habitat, species or biodiversity value formally recognised as such by a national government under a scheme that operates to an agreed standard within that country. Such recognition normally confers a high degree of protection to the designated interest.
Notified species	Species identified as at risk by the statutory authority responsible for conservation in each country
OHSAS18001	Occupational Health and Safety Management Systems— Requirements is an internationally applied British Standard for occupational health and safety management systems. It exists to help all kinds of organizations put in place demonstrably sound occupational health and safety performance.
Oilseed rape straw	Straw obtained from the cultivation of oilseed rape.
PAS100	The British Standards Institution Publicly Available Specification 100 for producing quality compost.

•	
Peat	'Peat is an organic soil formed mainly from the remains of plants that have accumulated in situ. Peat accumulates in wetland habitats, primarily because waterlogging and associated anoxia retards the decomposition of plant material' (Wheeler & Shaw, 1995).
Peat forming habitat	Habitat supporting peat forming species (wetland species), generally consisting of the Sphagnum bog mosses and cotton grasses, although other plant material such as non-Sphagnum mosses, purple moor grass, or heather stems and roots can sometimes make significant contributions to the peat matrix.
Perlite	An amorphous volcanic glass mineral normally formed by the hydration of obsidian used in some, primarily specialist, growing media mixes.
Plantation	A cultivation system where the natural vegetation is cleared and replaced with planted agricultural or horticultural species, which normally remain in place and produce a crop from the same plants for two or more seasons.
Point of entry	First point at which a finished product enters the country. If materials are transported by sea this will be the port at which the product arrives. If materials are transported by road this will be where the material crosses into the country, i.e., national boundary. For finished products produced outside mainland UK, transport to the mainland needs to be taken into account.
Pollutant	A substance (solid, liquid or gaseous) introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource.
Pollute (water soil or air)	To discharge emissions that have, or have the potential to have, an adverse impact on the environment.
Pollution	The discharge of a substance (solid, liquid or gaseous) that is likely to have an adverse effect on the natural environment or life.
Potable water	Water suitable for drinking under normal conditions by the population of that country in which the water is located.
Processing system	That part of the growing media or soil improver manufacturing process where individual raw materials are processed and prepared for sale. Processes may include screening, grading, reconstituting, expanding, etc.
Recovered waste	A substance that was defined as a waste material, but is no longer classified as such by the relevant regulator within that jurisdiction. Recovered waste will normally have been through a prescribed process and achieved the requisite standard.
Recycled materials	Employing materials for a useful purpose that have already been used for another purpose as a replacement for virgin materials. Recycled materials will often be 'recovered waste' but that is not necessarily the case.
Recycled peat	 Peat is only considered a recycled material when it meets specific criteria; otherwise it is considered a virgin material. The specific criterion is: Waste peat removed from development sites; where removal of peat is not the purpose of development, i.e. the purpose is not peat extraction (for fuel or horticulture) and where it is demonstrated that excavation and removal is unavoidable.
Regulator approved mitigation measures	Specified works or measures to reduce prevent or compensate for an adverse impact of operations agreed with the relevant regulator within that jurisdiction.
Renewable	A resource that can be replenished through naturally occurring processes. The timescale for replenishment is normally considered

0	5
Renewable Energy	The Renewable Energy Guarantees of Origin (REGO) scheme
Guarantees of Origin	provides transparency to consumers about the proportion of
(REGO) scheme	electricity that suppliers source from renewable electricity.
	This scheme provides certificates called REGOs which demonstrate
	electricity has been generated from renewable sources.
Responsible	In the context of growing media and soil improver production, to
	select raw materials and to manufacture with care and forethought
<u> </u>	and to comply with environmental and social standards.
Restoration/	Site specific plan to ensure that worked land (extraction site) is
rehabilitation/ aftercare	reclaimed for a defined future purpose, e.g. biodiversity and
plan Datting	conservation.
Retting	A process using the dual effects of water soaking and the action of
	micro-organisms to break down the cellular tissue of fibres facilitating
Deves a d Mister	the separation of fibres in the coconut husk.
Reused Water	Water used more than once or recycled.
Roundwood	Wood in its natural state as felled, with or without bark.
SA8000	Social Accountability 8000 International Standard. A voluntary
<u> </u>	standard for auditable third-party verification.
Sand	Very fine loose fragments of rock, normally created by a process
Codev	involving the influence of water.
Sedex	Sedex, the Supplier Ethical Data Exchange, is a not for profit
	membership organisation dedicated to driving improvements in
	responsible and ethical business practices in global supply chains.
	Sedex offers a simple and effective way of managing ethical and
Cite	responsible practices in the supply chain.
Site	Land within the boundary of the licence (or equivalent boundary)
SMETA	Sedex Members Ethical Trade Audit
Softwood	Wood from conifers.
Soil improver	Material added to soil in situ primarily to maintain or improve its
	physical properties, and which may improve its chemical and/or
Solid effluent	biological properties or activity. Also known as a soil conditioner.
Solid ellident	Emissions from a raw material or process in the form of solid
Spont muchroom	particles (as opposed to a gas or liquid).
Spent mushroom	Mushroom growing media removed from the mushroom growing
substrate Sphagnum (farmed)	trays at the end of the growing cycle.
Sphaghum (larmed)	Sphagnum (farmed) is the product of the cultivation of peat moss
	(Sphagnum) for the production and harvest of peat moss biomass. The Sphagnum is cultivated in order to gain renewable raw material
	for the production of horticultural growing media as an alternative to
	using peat soil. Wild harvested Sphagnum is not included.
Start of mixing system	The point for a finished product immediately prior to the mixing line.
Start of mixing system	
Substrate	A material or combination of bulk raw materials used, where required
oubsilate	with further additives such as lime and fertiliser, to support plant
	growth.
Sustainable	Use of materials that meet the needs of current consumers without
	compromising the ability of this or future generations to meet or
	enjoy their social, environmental and economic needs.
Topsoil	The upper layer of the soil, typically 0.15 to 0.30 metres deep. In the
	context of growing media a manufactured product using a proportion
	of loam/soil blended with other products is also referred to as
	'topsoil'.
Vermiculite	A hydrous silicate mineral used in some, primarily specialist, growing
	media mixes.

Virgin material	A material obtained or manufactured for a specific purpose that has not previously been used for another purpose.
Volume where commercial transport becomes viable	This is a volume based assessment and not an economic measure of commercial viability.
Wetland habitat	An area with the water table at, close to or above land surface level for the majority of the year, where the flora or fauna are adapted to and rely on those conditions.
Windrow composting	The production of compost by piling organic matter or biodegradable waste in long rows (windrows). These rows are generally turned to improve porosity and oxygen content, mix in or remove moisture, and redistribute cooler and hotter portions of the pile.
Wood based material	This is material that comes from a tree, but excludes fruits, nuts, leaves, resins.
Wood fibre	 A wood-based substrate: Where the structure is modified during the manufacturing process to mechanically separate the wood fibres and create a lighter more open product than the raw material. The manufacturing process involves more than shredding / chipping / screening to change the wood particle size and uses heat / steam / mechanical processing to alter the physical characteristics of the raw material; or That is composed of fine composted wood residues
Wool	The fine, soft curly or wavy hair forming the coat of a sheep, goat, or similar animal. For the purposes of this scheme reference to wool should be taken to mean sheep wool.
Worm compost	Compost produced using worms

Annex 2: Social compliance self-assessment questionnaire minimum requirements

There is no requirement to use this template for undertaking a social compliance selfassessment (<u>https://www.responsiblesourcing.org.uk/media/usvgyieo/annex-2-self-</u> <u>assessment-questionnaire-minimum-requirements-v7.xlsx</u>). However, to qualify as a selfassessment questionnaire for scoring purposes it must as a minimum contain the questions set out in the 'self-assessment minimum requirements' spreadsheet and achieve no more than 2 major and/or 5 minor failures.

Annex 3: Documentary evidence checklist

This is a summary of the documentary evidence requirements set out under each of the criteria.

Energy use (in extraction, transport and production)

- Supply chain map with distances and methods of transport
- Production/manufacturing fossil fuel energy use records (diesel, electricity etc.) and calculations
- Transport energy use calculations covering the whole supply chain, using standard distances and conversion factors where necessary.
- For renewable energy generated by company and used in processing or manufacture of material, documented evidence of energy generation and consumption.
- For energy obtained through green tariff, documented evidence of certification of the tariff through the Renewable Energy Guarantees of Origin (REGO) scheme or equivalent.

Water use (in extraction and production)

- Supply chain map
- Excavation/production/manufacturing water use records for all production and manufacturing processes.
- Records of any rainwater harvesting or water recycling used.

Social compliance

- Supply chain map including sources of all materials.
- Details of the social compliance process, including any internal checks of suppliers.
 - Transparency is obtained through the use of either an internal management system or an external management system such as Sedex or BSCI.
 - Self-assessment questionnaires may be used as proof (see Annex 2: Social compliance self-assessment questionnaire minimum requirements), but they are scored at a lower value than independent audits (Table 11).
 - Neither ISO14001 nor ISO9001 are acceptable proof. OHSAS18001 only offers partial proof as it does not cover the labour standards elements required but does cover the health and safety requirements.
- Risk assessments
- Certification to confirm successful independent audits throughout the supply chain.
- Independent audits of suppliers need to be conducted using recognised approaches such as SMETA, BSCI, SA8000 or similar.

Habitat and biodiversity - Peat

- Supply chain map including sources of peat.
- Evidence that the site has not been identified as being a local, national or international conservation site or part of a protected landscape.
- Proof of development/drainage start date.
- Restoration/rehabilitation plan including proof that this has been approved by a licencing body or other competent authority, e.g., statutory conservation body.

- Proof of provision to guarantee the financing of restoration including documentation of the method of guarantee (and associated policy where relevant) and that the funds will be sufficient to deliver the restoration plan.
- Proof of source of recycled peat and that excavation and removal of peat at that site is unavoidable.

Habitat and biodiversity – Wood based materials

- Supply chain map including sources of wood-based materials.
- The source of material (virgin by-products and recycled material)
- That material comes from a sustainably managed forest. Could include:
 - Independent third-party certification.
 - Recognised national/retailer schemes.
 - Recognised country of origin risk assessment (low risk) (e.g., FSC Controlled Wood National Risk Assessment) (material relying on this proof alone should not be included in % calculation).
- Membership/certification to appropriate scheme.
- Total amount of material handled, detailing level of certification or other qualifying proof (i.e., not country of origin risk assessment).

Habitat and biodiversity – Coir pith

- Supply chain map including sources of coir pith/coconuts.
- Documentary evidence of the source of material.
- For known specific location sourced materials:
 - Evidence of previous land use.
 - Evidence of first cultivation date for coconuts.
 - Evidence of cultivation system (monocrop, etc.).
- For regional assessment:
 - Evidence of regional land use change to deliver any expansion of coconut production.

Habitat and biodiversity – Minerals

- Supply chain map including sources of minerals.
- Evidence that the site has not been identified as a local, national or international conservation site or part of a protected landscape.
- Restoration/rehabilitation plan including proof that this has been approved by a licencing body or other competent authority, e.g., statutory conservation body.
- Proof of provision to guarantee the financing of restoration including documentation of the method of guarantee (and associated policy where relevant) and that the funds will be sufficient to deliver the restoration plan.
- Proof of source of recycled minerals.

Habitat and biodiversity - Recycled materials

• Supply chain map

Habitat and biodiversity – Agricultural crops (energy crops for AD, oilseed rape straw, farmed Sphagnum)

• Supply chain map including sources of agricultural crops.

- Documentary evidence of the source of material.
 - Evidence of previous land use.
 - Evidence of first cultivation date for agricultural crops.
- Documentary evidence that the farm is in a higher-level environmental scheme (applicable scheme to the country of origin) or is being managed to an equivalent standard.

Habitat and biodiversity – Bracken

- Supply chain map including sources of bracken.
- Documentary evidence that bracken management is carried out following a bracken management plan, that this management plan follows best practice guidance and that it has regulatory approval (where required or as needed).

Habitat and biodiversity – Wool (sheep only)

- Supply chain map including sources of wool.
- Documentary evidence of the source of material.
 - Location of farm (upland vs lowland). To meet the definition of an upland sheep farm, the sheep should spend the majority of their life cycle in an upland extensive grazing system.
 - Evidence that sheep grazing is being used as part of a habitat conservation plan if not in an upland extensive grazing system.
- Documentary evidence of the stocking density of sheep on each of the habitat types present on the farm.

Habitat and biodiversity - cork

• Supply chain map including sources of cork.

Pollution

- Supply chain map including sources of all materials and known potential pollutant hotspots.
- Records of enforcement actions.
- Details of legally binding mitigation agreement.
- Monitoring records.
- Completed pollution questionnaires and supporting documentation of the measures recorded.
- Pollution rater records.

Renewability

- Evidence of materials used.
- Proportion of each material used in final product.
- For wood-based material species used, differentiating between hardwood/softwood.
- For peat, where potentially renewable within 100 years, documented:
 - o evidence of peat type (sphagnum/sedge).
 - o peat extraction plan including depth excavated annually.
 - site restoration plan including timescales.

Resource use efficiency

- Evidence of materials used.
- Energy records use during processing for recycled materials (kWh/m³).
- Volume of input materials (m³).
- Volume of in-scope waste generated during production (m³).
- In-scope waste as a proportion of input material (%).